Water Quality Articles | Water Filter Information & Articles – Tagged "disinfection byproducts" – Page 3 – Hydroviv

Problems We Found In Boynton Beach, Florida Drinking Water Quality

Analies Dyjak | Policy Nerd   

For Hydroviv’s assessment of the city of Boynton Beach, Florida's drinking water, we collected water quality test data from the annual Boynton Beach Consumer Confidence Report and the U.S. Environmental Protection Agency. We cross referenced Boynton Beach water quality data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in Boynton Beach drinking water.

Disinfection Byproducts In Boynton Beach Drinking Water

Let’s start with Disinfection Byproducts or DBPs. DBPs are formed when chlorine-based disinfectants that are routinely added to the water supply to kill bacteria, react with organic matter. Boynton Beach water quality has some pretty high levels of disinfection byproducts. According to the most recent report, concentrations of haloacetic acids averaged 26 parts per billion but reached levels as high as 33.7 parts per billion and concentrations of trihalomethanes averaged 74.8 parts per billion but reached levels as high as 149 parts per billion. For a bit of perspective, EPA’s maximum contaminant level for haloacetic acids is 60 parts per billion and 80 parts per billion for trihalomethanes. Health and regulatory agencies have very little knowledge about the adverse health effects of DBPs, and their toxicity. EPA has stated that they have been linked to an increased risk of bladder cancer, as well as kidney, liver, and central nervous system problems.

Chloramine In Boynton Beach Drinking Water

While most cities use chlorine, Boynton Beach uses chlorine and chloramine in the disinfection process. Chloramine is primarily responsible for what many customers report as the “bad taste” or “pool smell” of tap water. Concentrations of chloramine averaged 3.01 parts per billion but reached concentrations as high as 4.8 parts per billion. Again for a bit of perspective, the maximum contaminant level for chloramine is 4 parts per billion.

Other Articles We Think You Might Enjoy:
Disinfection Byproducts: What You Need To Know
What's The Difference Between Chlorine and Chloramine?
Problems We Found In Miami's Drinking Water

Problems We Found In San Diego's Drinking Water

Analies Dyjak | Policy Nerd   
Updated July 17, 2019 to include current data

For Hydroviv’s assessment of San Diego drinking water, we collected water quality test data from the San Diego Public Utilities and the U.S. Environmental Protection Agency. Our Water Nerds then cross reference the city's water quality data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in San Diego’s drinking water.

Where Does San Diego Source Its Drinking Water?

San Diego purchases water from the San Diego Water Authority. This water is sourced by the Colorado River Aqueduct and the State Water Project. The water is then treated at one of three treatment facilities throughout the city; Alvarado, Miramar, or Otay.

Extremely High Levels of Chromium 6 in San Diego

Chromium 6 is a highly toxic metal that is currently unregulated by the EPA. San Diego has had a major problem with this dangerous contaminant. In recent years, levels of chromium 6 in San Diego drinking water ranged from 50 to 170 parts per billion. These samples were collected between the years of 2013 and 2014, so it’s unknown if the Chromium 6 situation has improved or gotten worse. Chromium 6 pollution is associated with metal processing, tannery facilities, chromate production, stainless steel welding, and pigment production. EPA has acknowledged that Chromium 6 is a known human carcinogen through inhalation, but is still determining its cancer potential through ingestion of drinking water. Lung, nasal and sinus cancers are associated with Chromium 6 exposure. Ingestion of extremely high doses of chromium 6 compounds can cause acute respiratory disease, cardiovascular, gastrointestinal, hematological, hepatic, renal, and neurological distress which may result in death.

Perfluorinated Compounds In San Diego's Drinking Water 

Two out of five reported California drinking water systems affected by PFOA and PFOS contamination were located within the San Diego region. Camp Pendleton and the city of San Juan Capistrano both had concentrations ranging from 0.021 to 0.062 parts per billion. The Agency for Toxic Substances and Disease Registry recently recommended setting a Minimum Risk Level of 0.02 parts per trillion for drinking water for both of these substances, which would put both locations in exceedance. These data are preliminary and the effects to human health are still unknown. This category of chemicals are “emerging contaminants” which means they are thought to pose a potential threat to human health and the environment, but have yet to be regulated. Perfluorinated Compounds contribute to environmental contamination largely due to the fact that they are highly resistant to degradation processes, and thus persist for many years in water, air and can enter the food chain via bioaccumulation in certain animal species.

Disinfection Byproducts In San Diego's Drinking Water 

San Diego has a serious problem with Total Trihalomethanes (TTHMs) which is a type Disinfection Byproduct or DBP. EPA regulates two categories of DBPs: Total Trihalomethanes (TTHMs) and Haloacetic Acids-5 (HAA5). San Diego’s average concentration of Haloacetic Acids-5 was 17 parts per billion which is in compliance with the loose EPA Maximum Contaminant Level of 60 parts per billion. The average concentration for Trihalomethanes was 60 parts per billion, but concentrations were detected as high as 126 parts per billion which indefinitely exceeds EPA’s Maximum Contaminant Level of 80 parts per billion. Disinfection Byproducts are a category of emerging contaminants which means they have been detected in drinking water but the risk to human health is unknown. DBPs are formed when chlorine-based disinfectants are routinely added to the water supply to kill bacteria. Regulatory agencies have very little knowledge about the adverse health effects of DBPs, and their toxicity. EPA has stated that they have been linked to an increased risk of bladder cancer, as well as kidney, liver, and central nervous system problems. Some disinfection byproducts have almost no toxicity, but others have been associated with cancer, reproductive problems, and developmental issues in laboratory animals.

It’s important to note that only a handful of contaminants are required to be included in annual Consumer Confidence Reports, and that there are hundreds of potentially harmful unregulated contaminants that aren’t accounted for. If you’re interested in learning more about water filters that have been optimized for San Diego’s tap water quality, feel free to visit www.hydroviv.com to talk to a Water Nerd on our live chat feature or send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
5 Things To Know About Chromium 6 In Drinking Water
Industrial Solvents In California's Drinking Water
PFOA and PFOS Contamination: What You Need To Know

Problems We Found With Portland, Oregon Drinking Water


Analies Dyjak, M.A. | Policy Nerd   
Updated August 2, 2019 to include current data

For Hydroviv’s assessment of Portland, Oregon drinking water quality, our Water Nerds collected test data from the Portland Water Bureau, the U.S. Environmental Protection Agency, and other available data. We cross referenced these data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in Portland’s drinking water.

Where Does Portland, Oregon Source Its Drinking Water?

Portland sources its drinking water from the Bull Run River which is located in Mt. Hood National Forest. Portland also draws drinking water from the Columbia South Shore Well Field, which is made up of 26 groundwater wells. The wells draw water from three different aquifers located on the perimeter of the Columbia River.

Lead In Portland’s Drinking Water

Lead contamination is by far of biggest concern in Portland, Oregon drinking water. Not only are the city wide lead levels among the highest in the country, lead contamination has been getting worse in recent years. According to the most recent data, the 90th percentile for lead in Portland drinking water is 11.9 parts per billion. This is just under the outdated Federal Action Level of 15 parts per billion. In recent years, the 90th percentile in Portland has exceeded the Federal Action Level. Additionally, to put things in perspective, EPA, CDC, and American Academy of Pediatrics all recognize that there is no safe level of lead for children.

The goal of annual Consumer Confidence Reports is to be as transparent as possible so that residents can be informed about problems with their drinking water. Unfortunately, Portland’s report was written in a way that leaves consumers confused when it comes to lead. When reading through the report, lead levels for the treated source water are displayed prominently. Of course, these lead levels are very low, because lead contaminates water as it flows through lead containing pipes found in the distribution system and the home’s plumbing. The relevant data for samples collected at the tap are buried in a small table on the next to last page, separate from the other contaminants.

Disinfection Byproducts In Portland’s Drinking Water

Portland’s municipal water also had high concentrations of Disinfection Byproducts or DBPs. Concentrations were detected as high as 44.5 parts per billion, and averaged 37.7 parts per billion for Total Trihalomethanes (TTHMs). Haloacetic Acids-5 (HAA5) concentrations were as high as 51.2 parts per billion and averaged 37.7 parts per billion. For a bit of perspective, EPA's Maximum Contaminant Level for TTHMs is 80 parts per billion and 60 parts per billion for HAA5. While Portland's water quality chemical concentrations are technically in compliance, these levels are definitely high. Disinfection Byproducts are a category of emerging contaminants which means they have been detected in drinking water but the risk to human health is unknown. DBPs are formed when chlorine-based disinfectants are routinely added to the water supply to kill bacteria. EPA has stated that they have been linked to an increased risk of bladder cancer, as well as kidney, liver, and central nervous system problems. Some disinfection byproducts have almost no toxicity, but others have been associated with cancer, reproductive problems, and developmental issues in laboratory animals. 

Chloramine In Portland’s Drinking Water

While most municipalities use chlorine as the primary drinking water disinfectant, Portland’s drinking water is disinfected with chloramine. Chloramine is primarily responsible for what many customers report as the “bad taste” or “pool smell” of tap water. Unlike chlorine, chloramine does not dissipate if a container of water is left in the refrigerator overnight. Most one-size-fits-all water filters use filtration media that doesn’t do a great job removing chloramine, but the filters that we design and build at Hydroviv for Portland's water problems use a special filtration media that is purposefully designed to remove chloramine.

It’s important to note that only a handful of contaminants are required to be included in annual Consumer Confidence Reports, and that there are hundreds of potentially harmful unregulated contaminants that aren’t accounted for. If you’re interested in learning more about water filters that have been optimized for Portland’s tap water quality, feel free to visit www.hydroviv.com to talk to a Water Nerd on our live chat feature or send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead Contamination In Drinking Water 
Disinfection Byproducts In Drinking Water: What You Need To Know
Chlorine Vs. Chloramine: What You Need To Know
Personalized Water Filters

Personalized Water Filters

Why Optimization Matters

Have you every traveled to a different city and noticed that the water tastes different? That’s because the water chemistry is different, and more importantly, the problems present in the water are different too.

Around the country, millions of U.S. households have contaminants in their water that exceed public health goals, but the individual contaminates vary significantly state by state and even zip code by zip code. The issues in your water can be impacted by a variety of factors including the age of your home and city’s infrastructure, the natural geology of the region, and your home’s proximity to industrial sites, farms and military bases. Cities with older infrastructure like Pittsburg, Pennsylvania, and Jackson, Mississippi, for example, face issues with lead contamination, while new developments in the American Southwest may be lead-free, but record unsafe concentrations of arsenic.

To address the unique issues in your water, our Water Nerds analyze water quality reports from local, county, state, federal and academic sources, and then build a customized filter designed to match and screen out the specific contaminates and bad-tasting chemicals coming out of your tap. The result is a hyper-targeted and long-lasting filter designed to keep your water safe and tasting great.

Here are a few examples of how water differs around the country:

    • Lead: Lead contaminates tap water differently than most pollutants, because lead comes from the plumbing, not the water supply. Many neighborhoods in older cities have lead-containing service pipes that connect water mains to residential plumbing. Homes with pipes installed before 1986 often also have lead-containing solder. Lead can enter the water supply when municipal corrosion controls fail (what happened in Flint, Michigan) or when water sits stagnant in pipes for long periods of time. Lead contamination is a problem in all major U.S. cities, but there have been significant issues reported recently in Newark, Pittsburgh, Nashville and New York City. Many common pitcher filters do not remove lead. Learn more>
    • Arsenic: Arsenic is a naturally occurring toxic heavy metal that leaches into groundwater from surrounding rocks. Areas of the country where arsenic levels are high include Maine, Texas and much of the Southwest. Most common pitchers and fridge filters do not remove arsenic. Learn more>
    • Chromium-6: Chromium-6, the cancer-causing chemical at the center of the Erin Brockovich story, is still used in a number of industrial processes including steel production, leather tanning, and textile manufacturing. It can enter local rivers and groundwater through waste, and despite notable media attention is still not well regulated. Homes located near current or former industrial facilities are most at risk. Learn more>
Chlorine vs. Chloramine: Most municipalities around the country use chorine to disinfect their local water supply, but some, including our hometown of Washington, D.C., use chloramine. While both are safe at the levels used, neither taste very good. Most common filters are designed to remove only chlorine, but Hydroviv’s system is tailored to match whichever is used in your hometown, giving you the best-tasting results.  Learn more>


Learn more about our personalized filters and get the best solution for your water.
Why Does Washington, DC's Water Taste Bad?

Why Does Washington, DC's Water Taste Bad?

Updated March 26, 2018 with 2018 dates and the 2018 video.
Starting today (March 26), we have had lots of questions about a noticeable chance in Washington DC's tap water taste.  While we've heard lots of interesting hypotheses, what's really happening is that the Washington Aqueduct (where DC Water purchases water from) has recently switched over from chloramine to chlorine for an annual "Spring Cleaning" of the distribution lines.

How Are Chloramine and Chlorine Different?

We answer this question in much more detail in a different post, but here's the skinny on chlorine in drinking water:  Like a growing number of US cities, Washington, DC uses chloramine as the primary disinfectant for a couple of reasons:

1.  It persists longer in the distribution system, so it does a better job killing bacteria in areas of the water distribution system that are near the end of the pipes, or don't have as high of flow as other areas.

2.  It doesn't form disinfection byproducts in the presence of organic matter.

3.  Chloramine-treated water doesn't have as strong of a taste as chlorine-treated water

While these are all great reasons to use chloramine, most cities that use chloramine undergo a more aggressive disinfection cycle for a few weeks each year (aka Spring Cleaning).  

What Are The Impacts of Switching to Chlorine?

During this time, some people find that the water tastes and smells tastes bad, and the bathroom smells a bit like a swimming pool's locker room after showering.  If you want to fix this problem... you have a couple of options that don't involve bottled water (horrible for the environment).

1.  Filter your water

2.  If you let chlorinated tap water sit in a pitcher overnight, a good amount of the chlorine taste will go away.

When Will Washington, DC's Water Switch Back Over to Chloramine?

May 7 is the day that DC Water plans to switch back over to chloramine.  Until then... non-Hydroviv users will just have to hold their noses!

 

Other Great Articles We Think You'll Love

 

 

Digging Into The Environmental Working Group Tap Water Database

Digging Into The Environmental Working Group Tap Water Database

Eric Roy, Ph.D.  |  Scientific Founder   

This past week, the Environmental Working Group (EWG) released a website where people punch in their zip code, and view contaminants found in their water.  As a company that uses water quality data to optimize each customer’s water filter, we applaud EWG for putting in the enormous amount of time & effort to build the database so the public can learn about their water.  Unfortunately, we are seeing that these data are being used to generate inflammatory headlines, which can leave consumers confused and unnecessarily panicked.   

We will be updating this water quality database blog post as more questions come in. If you have your own question, please reach out to us (hello@hydroviv.com).  One of our water nerds will do their best to get back to you very quickly, even if it’s outside of our business hours.

Frequently Asked Questions 

Updated July 31, 2017

Are All Potential Contaminants Listed In The EWG Tap Water Database?  

No.  The EWG Tap Water Database pulls data from municipal measurements, but municipalities are only required to test for certain things.  Simply put, you can’t detect what you don’t look for.  One example of this can be seen by punching in Zip Code 28402 (Wilmington, North Carolina) into the EWG Tap Water Database.  GenX, a chemical that has been discharged into the Cape Fear River by Chemours since PFOA since 2010, is not listed, even though it’s been in the center of a huge topic of conversation for the past 2 months in the local media.

Why Is The “Health Guideline” Different Than The “Legal Limit?”

The two different thresholds use different criteria.  For example, the “Health Guideline” cited by EWG for carcinogens is defined by the California Office of Environmental Health Hazard Assessment (OEHHA) as a one-in-a-million lifetime risk of cancer, while the “Legal Limit” refers to the MCL which is the limit that triggers a violation by EPA.  The OEHHA's criteria are established by toxicological techniques, while the EPA limits are negotiated through political channels.  We wrote an article that addresses this topic in much more detail for those who are interested.

Why Am I Just Learning About This Now?

The EPA's Safe Drinking Water Act requires municipalities to make water quality test data public in Consumer Confidence Reports.  These reports are required to talk about the water's source, information about any regulated contaminants found in the water, health effects of any regulated contaminant found above the regulated limit, and a few other things.  As discussed before, the data in the EWG report use different criteria than the EPA, and it's hard for people to make sense of what's what.  

Are The Data Correct If My Water Comes From A Private Well?

No.  The EWG Tap Water Database only has data for municipal tap water.  Private wells are completely unregulated, and there's no requirement to conduct testing.  If you'd like us to dig into our additional water quality databases to help you understand likely contaminants in your private well, we're happy to do so.  We don't offer testing services, but we're happy to help you find an accredited lab in your area, give advice on which tests to run, and help you interpret the results!  We offer this service for free.

What About My City's Water Quality?

Hydroviv makes it our business to help you better understand your water.  As always, feel free to take advantage of our “help no matter what” approach to technical support!  Our water nerds will work to answer your questions, even if you have no intention of purchasing one of our water filters.  Reach out by dropping us an email (hello@hydroviv.com) or through our live chat. You can also find us on Twitter or Facebook!

Recommended For You

How Do I Filter Chromium 6 From Drinking Water?
Why Are So Many Schools Testing Positive for Lead?
Please Stop Using Cheap TDS Meters To Evaluate Water Quality!  They Don't Tell You Anything!