Water Quality Articles | Water Filter Information & Articles – Tagged "newark" – Hydroviv
Newark Lead Crisis: Why Are the Water Filters Not Working?

Newark Lead Crisis: Why Are the Water Filters Not Working?

Eric Roy, Ph.D.  

As a chemist, I was disappointed (but not surprised) to learn that a water filter  made by Pur is having performance failures in Newark, despite being certified to remove lead. The goal of this article is to explain how water filter testing/certifications work, and to point out the most common reasons why a certified product can fail under real-world conditions

How Does Water Filter Certification Work?

Before going into the specific technical reasons why filters could have failed, it’s important to understand how and why water filter companies undergo 3rd party certifications from organizations like National Sanitation Foundation (NSF)

Any water filter company that wants to get their product "certified" must: 

  • Pay the certification agency to test that the product meets the specifications of the test protocol (more on this below).
  • Pay for project management, site visits, and listing fees to "maintain" the certification.   

In addition to strengthening their marking claims, there are business reasons why water filter companies elect to pay the high cost of obtaining certifications instead of demonstrating that their product works through independent laboratories.  For example, certain government entities require that products carry specific certifications to back marketing claims, and often times carrying these certifications opens up the door to large-scale government procurement (the City of Newark purchased over 35,000 of these filters for their citizens).  

NSF/ANSI Standard 53 Test Protocol For Lead Removal

A lot of the people we talk to are surprised to learn that the criteria used to performance test water filters is standardized and, and may not apply to their water.

In the case of “NSF certified” filters for lead removal, the filter must reduce lead from 150 parts per billion to a certain level in room temperature water that is free of other of harmful contaminants. These tests are run at 2 different pH values (6.5 & 8.5), for the manufacturer-specified lifetime of the filter (in gallons), at a manufacturer-specified flow rate (in gallons per minute).

Water filter companies don’t get extra points for: reducing lead to undetectable levels, being able to handle higher lead concentrations, performance in the presence of other metals, having consistent performance across the entire gallon capacity, operating at higher flow rates, or performing tests at different pH values. In the eyes of certification bodies, filters either meet the performance specification or they don't.

Understanding the framework of "certification" is important in understanding why products that are certified to remove lead can fail under real-world conditions. 

Newark's Water May Not Be Well Represented by Product Testing Procedure

As we discussed earlier, “certified” filters undergo a standardized testing protocol in a controlled laboratory environment.  Unfortunately, controlled laboratory studies don't always match the real-world conditions found in customer's homes.

For example, the filter's real-world performance can break down if:

  • The water’s initial lead levels are above 150 parts per billion
  • The filter was flowing at a faster flow rate than specified
  • The temperature of the water is different than the test protocol
  • If other contaminants are present in the water that consume the lead removal media

The End User May Have Used the Filter Outside of Manufacturer's Specifications

Sometimes the consumer misunderstands how to read the manufacturer's specs.  For example, water filters are rated for a gallon capacity, which the manufacturers translate to an approximate filter lifetime, based on normal usage.  For example, a filter that is rated to handle 100 gallons of water with 150 ppb lead might have a 3 month estimated lifetime based on "normal use." However, if the end user passes 100 gallons of water through the filter in a single day, the capacity will be saturated in a day. During the Flint lead crisis, we learned that families were using a single filter to fill up large water jugs for bathing, because they thought that the water filter's expiration was time based, not a gallon capacity. Unfortunately, this practice saturated the filter with lead much more quickly than the estimated lifetime.

Poor Manufacturing QA/QC or Changes to the Filter

It's well-understood that quality control can suffer when manufacturing is transitioned to low-cost factories. If the cartridge manufacturing facility quietyly changed anything about the filter's construction, or there was a QA/QC lapse in production, the certification agencies may not catch the performance change until the next testing cycle (which is typically every 5 years). 

The Type of Filter Distributed by Newark Allows Users to Easily Operate the Filter out of Spec

One of the negative things “end of faucet” filters is that the user can easily run hot water through the filter. Manufacturers of these products issue guidance against it in their spec sheets, but people regularly ignore the warnings so they can have filtered hot water (or so they think). What isn’t necessarily obvious to the consumer is that hot water can impact the performance of a water filter because hot water typically has much higher lead and other heavy metal levels than cold water. This is due to a number of factors (e.g. residence time in hot water tanks, temperature dependence of metal leaching). If an unexpectedly high “slug” of heavy metals flowed through the cartridge, the lead removal media will become saturated faster than the gallon rating on the package.  Once the filter is saturated, it's useless. On top of this, hot water often has higher concentrations of bacterial and other particles that can “foul” a filter and negatively impact the performance. 

Takeaway Message 

Unfortunately, the filters in Newark are not performing to the levels that the customer (City and Citizens of Newark) was led to believe by the filter manufacturer. Hopefully, this event will prompt cities to independently test water filters before using public funds to purchase them.

Full Disclosure: Despite being critical of the “pay-to-play” nature of certification, Hydroviv's products are in the process of undergoing product certification by NSF. The decision to do so is purely a business decision (some governments require that products be NSF certified). The reality is that Hydroviv filters have always exceeded the performance requirements set by NSF/ANSI Standard 53. 

Newark, NJ Lead Crisis: The New Flint

Analies Dyjak | Policy Nerd   

Lead concentrations in Newark's drinking water have been in exceedance of the Federal Action Level since 2015. The largest city in New Jersey has struggled to keep lead concentrations under the 15 part per billion threshold ever since the standard was set in 1991. Recent sampling has detected staggering concentrations of lead in Newark's drinking water, ranging anywhere from 58 to 137 parts per billion. You may be wondering why Newark's water crisis has not been thrust into the national spotlight. While Flint, Michigan captured the nation’s attention, the lead crisis in Newark remains largely underreported.

Lead: Newark, New Jersey

It's no secret that older municipalities have problems with lead contamination in drinking water. This is in part due to an aging infrastructure, and Newark, New Jersey is no exception. The city of Newark supplies 80 million gallons of water per day to over 300,000 customers. The Pequannock Water Treatment Plant treats water from the Charlotteburg Reservoir and supplies water to Newark’s North, West, South, and Central Wards. The Wanaque Water Treatment Plant is operated by the North Jersey District Water Supply Commission, which supplies water to the East Ward and part of the North and Central Wards. 

Misinformation 

Newark residents have repeatedly been ensured that their water is “safe to drink.” On page one of the most recent Consumer Confidence Report (CCR), the city’s mayor claimed that “the quality of our water meets all federal and state standards.” False. He continued to say that only “one or two” homes were in exceedance of the federal Action Level. Also false. The truth is that between January and June of 2017, 16 sites were in exceedance of the action level and from July to December 2017, 11 sites were in exceedance of the action level. Mayor Baraka defended his claims by saying that the source water is safe to drink. It's well understood that lead contamination occurs when water comes in contact with residential lead service lines, rather than when it leaves a treatment facility. The problem is most people stop reading once their city officials tell them their water doesn’t contain lead. In a perfect world, when a city official says something is "safe" you should trust and believe them. 

What Is A Safe Level Of Lead?

The American Academy of Pediatrics acknowledges that there is no safe level of lead for children. Again, a safe threshold does not exist. Childhood lead exposure can cause serious developmental problems that can manifest later in life. Adults may experience neurological and gastrointestinal effects, as well as an increased risk of miscarriages and stillbirths when exposed to high concentrations of lead. EPA set an Action Level of 15 parts per billion, but toxicologists agree that this federal threshold is far too high. 

Current Treatment Techniques in Newark, NJ

The chemistry of the water entering the Pequannock treatment facility is very different than the water entering the Wanaque treatment facility. Because of this, both facilities have their own unique treatment plans. The two distribution systems use different corrosion control technologies for reducing lead: 

  • Pequannock: sodium silicate dose of 12-15 mg/L (goal of 6 mg/L)

  • Wanque: 1.2 mg/L of orthophosphate

**Orthophosphate is a common corrosion inhibitor. It forms a mineral-like crust on the inside of lead service pipes. In some cases, sodium silicate can decrease lead concentrations by increasing the pH of the water. When sodium silicate was initially added to Newark water, it was believed to effectively prevent corrosion. Research has since found that sodium silicate isn’t always effective.**

Newark’s History of Lead Contamination

Elevated Lead Concentrations From Pequannock Water Treatment Plant Data (1992-2018)

Parameter

1992

1998

2003

2006

2012

2015

2017 (1)

2017(2)

2018(1)

90th Percentile

26.8

12.3

12.2

9.5

9.7

15.8

29.8

36.0

22.9

Number of Samples (n)

137

103

28

25

24

25

75

117

90

Number of Samples >15 ppb

37

7

0

0

0

3

24

34

16

Percent >15&<25ppb

15.3%

6.8%

0%

0%

0%

12%

16%

6%

7.8%

Maximum ppb

60.4

23

14.2

11.5

14

25

137

77.7

58.9

CONCENTRATIONS OVER 15 PARTS PER BILLION IN RED 

Elevated Lead Concentrations From Wanaque Water Treatment Plant Sampling Data (1992-2018)

Parameter

1992

2002

2003

2012

2015

2017 (1)

2017(2)

2018(1)

90th Percentile

25.7

11.2

8.4

6.2

2

7.4

8.7

8.7

Number of Samples (n)

93

114

29

27

27

46

67

49

Percent >15&<25ppb

12.9%

0%

0%

3.7%

0%

0%

0%

2%

Maximum ppb

49.4

14.9

12.3

19

37

84

46.1

182

CONCENTRATIONS OVER 15 PARTS PER BILLION IN RED

Questionable Sample Techniques:

As recent as September 10, 2018, Newark did not follow EPA sampling guidelines in accordance with the Lead and Copper Rule. Sampling occurred after a 6 to 12 hour stagnation period, which is compliant.  Faucets were then flushed for 10 minutes before a 500 mL sample was collected. Under 40 CFR 141.86 (b), the proper sampling technique is to take a 1 liter “first-draw” sample. Even so, first-draw samples aren’t always an accurate indication of lead in drinking water.

Failure of Orthophosphate As A Corrosion Inhibitor

This is not the first time Orthophosphate has failed as a corrosion inhibitor. Madison, Wisconsin gave Orthophosphate a shot in hopes of reducing city-wide lead levels. Madison city officials stated that Orthophosphate didn’t work, causing the city to adopt an expensive full lead service line replacement program. Phosphates are known to pollute waterways by causing algae blooms, which is why the Pequannock Plant is unable to add it upstream of Cedar Grove.

Environmental Justice

46% of the population in Newark speak a non-English language (a CCR in multiple languages is not available on the city’s website). The fundamental purpose of a disclosure is to communicate information. If people are unable to understand the information, then it isn't disclosure. This is further extrapolated when citizens are led to believe a false narrative.

Major Takeaways

  1. City officials failed to adjust corrosion control techniques after current methods were found to be ineffective

  2. Because of the effects on waterways, Pequannock is unable to add orthophosphate to incoming source water

  3. The Lead and Copper Rule doesn’t hold municipalities accountable for lead infractions, nor does it allow for direct and immediate action

  4. Sodium Silicate has been adjusting the pH without preventing corrosion for decades 

  5. Newark residents were continuously told that they didn't have a lead problem

Our Thoughts:

Addressing lead contamination at a system-wide level is not easy. We’ve seen this in Flint, Pittsburgh, Washington D.C., and Portland, Oregon (who won’t even admit that they have a lead problem). Simply put, 100 samples for a city of 300,000 is not enough, and 24 is unacceptable. Newark needs to work towards a greater level of transparency and accountability, but until then, consumers must protect themselves. 

Other Articles We Think You Might Enjoy:
The Lead and Copper Rule
Does Your Home Have Lead Plumbing? Here's How To Tell
Lead In Schools: Flint, Michigan