Water Quality Articles | Water Filter Information & Articles – Tagged "Dioxin" – Hydroviv
EPA Superfund Sites:  An Overview On Environmental Hazards And Superfund Process

EPA Superfund Sites: An Overview On Environmental Hazards And Superfund Process

Emma Schultz, M.S.  |  Scientific Contributor

Do you know where your nearest EPA Superfund Site is? Chances are there is one close by, given that one out of every six Americans lives within three miles of an EPA-designated major hazardous waste site. There are two sites located within four miles of my childhood home, in an idyllic and quiet suburb of St. Paul, Minnesota. I now live within the same distance of five sites -- and I had no clue. 

Superfund Sites - Environmental Hazards

What does it mean to be living so close to so much waste? Common contaminants found at EPA Superfund Sites include asbestos, lead, radiation, and dioxins; these all pose significant risks to human and environmental health. In addition, hazardous substances can leach into the soil from ground level or contaminated water, and can then migrate into nearby homes through subsurface intrusion, entering buildings through foundation cracks and sewer lines. This vapor intrusion then poses further risk to nearby residents, inside of their homes where they would otherwise be inclined to feel safe. Obviously, proximity to a Superfund site is critical; four miles' distance poses a decreased health risk as compared to a mere forty feet.

What Is The Superfund Process?

The concept of EPA Superfund Sites is widely known and understood, but the intricacies of the program and the approach to hazardous waste mitigation are elaborate and prolonged, as can be expected of any federally-funded long-term project.

In December of 1980, President Jimmy Carter signed into law the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), now known better as Superfund, which authorized the EPA to remediate hazardous waste spills and sites, and obliged those responsible for the waste - the Potential Responsible Party - to either clean it up on their own dollar or offset the cost of EPA-led cleanup efforts. Superfund had abundant funding early in its existence due to taxes levied on chemicals and oil; those taxes, however, lapsed in 1995, and financing now comes from taxpayers.

There are multiple stages in the Superfund process once a site is identified, with the first step being a Preliminary Assessment or Site Inspection. If the site is an emergency such as a chemical spill, Removal Action is taken. Otherwise, Remedial Action is planned for, which often leads to years-long planning, cleanup, and remediation. Community involvement is frequently key during the early stages of Superfund designation, and the Technical Assistance Services for Communities (TASC) program is an outreach effort designed to connect with citizens and businesses for the duration of a Superfund's existence.

After initial study, EPA Superfund Sites are given a score on the Hazard Ranking System. If a site poses enough of a threat to environmental and human health, the EPA announces its addition to the National Priorities List (NPL), pending public comment and input. NPL sites are eligible for extensive, and often long-term, federal funding through the Superfund program. These NPL-listed sites are now officially Superfund sites.

Following NPL designation, a Remedial Investigation and Feasibility Study is conducted. The Remedial Investigation collects information on-site such as water and soil samples, and the follow-up Feasibility Study analyzes various cleanup methods. The EPA then selects the most suitable cleanup alternative and provides it to the community as a Proposed Plan.

A Record of Decision notes the cleanup alternative chosen for the site. In the Remedial Design phase, the cleanup plans are drawn up, and are finally acted upon in the Remedial Action stage. A goal of Remedial Action is to return sites to productive use as quickly as possible. Whether 'productive' means industrial, housing, commercial, or greenspace depends on conversations and input from the surrounding community.

A review of EPA Superfund Site cleanup efforts occurs every five years. If cleanup goals have all been met, a portion or whole of a Superfund site may then be listed for removal from the NPL. In theory, meeting all cleanup goals sounds achievable - especially given the lengthy planning and implementation phases - but there are many sites that remain listed decades later, because groundwater and soil are still polluted.

Where Can You Learn More About Superfund Sites?

Finding out if there are Superfund sites near your home is the first step that all concerned citizens should take. There are 10 Regional Superfund Community Involvement Offices around the country that exist to take your questions and concerns regarding existing or potential Superfund sites. 

Resources for homeowners:

Search for NPL Sites Where You Live - lists NPL sites near your zip code of interest
Cleanups in My Community - shows NPL sites and more in map format
To report oil or chemical spills, or other environmental emergencies, call the National Response Center at 1-800-424-8802, or visit this help page to learn more.
Hydroviv makes it our business to help you better understand your water. 
As always, feel free to take advantage of our “help no matter what” approach to technical support!  Our water nerds will work to answer your questions, even if you have no intention of purchasing one of our water filters.  Reach out by dropping us an email (hello@hydroviv.com) or through our live chat. You can also find us on Twitter or Facebook!
Other Articles We Think You'll Enjoy
Polychlorinated Biphenyls (PCBs):  Everything You Need To Know

Polychlorinated Biphenyls (PCBs): Everything You Need To Know

Stephanie Angione, Ph.D.  |  Scientific Contributor   

What Are Polychlorinated Biphenyls (PCBs)? 

Polychlorinated Biphenyls (PCBs) are a class of industrial that were widely manufactured in the US from the 1930s through the 1970s for use in electric equipment such as capacitors and transformers, and also as heat transfer fluids, plasticizers, adhesives, fire retardants, inks, lubricants, cutting oils, pesticide extenders, and in carbonless copy paper.
 
While PCB production slowed in the 1960s and was banned completely in the US in 1979, they are still found in industrial applications due to their chemical longevity. The US congressional ban was enacted due to the fact that PCBs are persistent organic pollutants, which create long lasting environmental toxicity and cause harmful health effects. Products that contain PCBs include old fluorescent lighting fixtures, PCB capacitors in old electrical appliances (pre-1978) and certain hydraulic fluids.
 
Nearly 2 million tons of PCBs have been produced since 1929, 10% of which persists in the environment today. Generally, environmental concentrations of PCBs are low, but due to their chemical inertness they are largely resistant to chemical breakdown or thermal destruction, and thus accumulate in the environment. Additionally, PCBs are highly fat soluble, resulting in the build up of PCBs in animal fat, resulting in higher concentrations of PCBs in top food chain consumers (e.g. predatory fish, large mammals, humans).
 

Where Are PCBs Found In The Environment?

Polychlorinated Biphenyls accumulate primarily in water sources, organic portions of surface soil, and in living organisms.
 

Water

Surface water that is contaminated with PCB waste generally has high levels of PCBs in sediment, as the PCBs attach to organic matter. PCBs can be slowly released from the sediment into the water and evaporate into the air, especially at higher temperatures.

Air

PCBs have been detected throughout the atmosphere, and can be transported globally through air. Concentrations of PCBs in the air are generally the lowest in rural areas and highest in large cites. Areas that are close to bodies of water that were highly contaminated with PCBs from industrial waste (e.g. Lake Michigan, Hudson River) can have higher air concentrations, due to evaporation of PCBs into the air over time.  

Living Organisms

PCBs accumulate in living organisms via bioaccumulation, or uptake from the environment, as well as biomagnification, from consumption along the food chain. Bioaccumulation is typically highest in aquatic species, with bottom feeding species having the highest levels of PCBs due to accumulation in sediment.  PCBs biomagnify up the food chain, as bottom feeders like shellfish are eaten by other species, and thus the greatest levels are found in large predatory fish. This process can also occur on land, as PCB contamination in soil is transferred up the food chain to insects, birds and mammals. Thus, one of the largest sources of PCB exposure and accumulation in humans is from food, specifically meat and fish.   

How Do PCBs Impact Humans?

While PCBs have been classified as probable human carcinogens, there is no evidence that the low levels of PCBs in the environment cause cancer. Exposure to high levels of PCBs have primarily occurred through workplace exposure in people who work in plants that manufacture the chemicals. Studies of workers exposed to high PCB levels have shown association with certain types of cancer. These high levels of exposure have also been known to cause liver damage, skin lesions called chloracne, and respiratory problems.

Exposure to PCBs during pregnancy can result in developmental and behavioral deficits in newborns. Additionally, there is evidence that reproductive function can be disrupted due to PCB exposure. Women of childbearing age, or those who are pregnant or nursing should be aware of fish and shellfish advisories to limit consumption of PCB contaminated fish.
There are additional studies that suggest PCB exposure can cause health effects including thyroid dysfunction, liver dysfunction, as well as adverse cardiovascular, gastrointestinal, immune, musculoskeletal, and neurological effects.
 

How Are PCBs Regulated & Monitored In The US?

With so many sources of PCB exposure from food and water sources, the US government has guidelines on the amount of allowable environmental PCB contamination for each.  

Food

The FDA enforces a tolerance level in fish of 2 ppm, and overall 0.2 -3.0 ppm for all foods. PCBs in paper food packaging are limited to 10 ppm.
 
If fishing recreationally and you plan to eat your catch, check if any local fish consumption guidelines exist for your area. The EPA maintains a national database of fish and shellfish advisories issued by each state. These consumption advisories may recommend limiting the amount of a certain fish consumed, or from specific waters or water sources. As of 2011, five areas have advisories for PCBs in freshwater sources (Missouri, Minnesota, Maryland, Indiana, and District of Columbia) and nine states (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, and Rhode Island) have PCB advisories for coastal waters.

Drinking Water

Under the Clean Water Act, industrial discharge of Polychlorinated Biphenyls in water is prohibited. The goal is to reach zero contamination in drinking water, but the enforceable maximum level is 0.0005 part per million (ppm).  Additionally, industries are required to report spills or accidental releases to the EPA. 

Routine monitoring of PCB levels in drinking water require the water supplier to maintain the limit enforced by the EPA and must make the data regarding water quality and contaminants public. Every year, the EPA requires water suppliers nationwide to provide a Consumer Confidence Report (CCR), which will include information about water treatment and any known contaminants. These reports are available on the EPA website and should be available on your water company’s website. Additionally, the supplier is required to alert customers of increased levels of PCB contamination as soon as possible.
 
If you get water from a household well, the local health department should have information about ground water quality and contaminants of concern, but it is often a good idea to have your water tested by a certified laboratory if you are worried about PCB (or other) contaminants. The EPA’s Safe Drinking Water Hotline (800-426-4791) can provide additional resources in your local area.

How Can I Remove PCBs From My Water?

If your water has high levels of PCBs in it,  the water should also not be used to drink, prepare or cook food,  or given to pets for consumption without first treating it.  Fortunately, PCBs are effectively removed from water by filters that use activated carbon as part of their active filtration media blend.
 
Hydroviv makes it our business to help you better understand your water.  As always, feel free to take advantage of our “help no matter what” approach to technical support!  Our water nerds will work to answer your questions, even if you have no intention of purchasing one of our water filters.  Reach out by dropping us an email (hello@hydroviv.com) or through our live chat. You can also find us on Twitter or Facebook!

Other Articles We Think You'll Enjoy

What You Need To Know About Mercury Contamination In Water
What Are Volatile Organic Compounds?  How Do They Contaminate Water?
Why TDS Measurements Don't Tell You Anything About Water Quality