Water Quality Articles | Water Filter Information & Articles – Tagged "Washington DC" – Hydroviv
Does Your Home Have Lead Plumbing?  Here's How To Tell

Does Your Home Have Lead Plumbing? Here's How To Tell

Eric Roy, Ph.D.  Scientific Founder

We get a lot of questions about lead service lines and how to tell if you have lead pipes, and we thought that it would be worth putting together an article that talks about some of the lesser known places where lead can exist in residential plumbing. Most people are surprised to learn that up until 2014, EPA allowed lead exist in fixtures & valves used for drinking water lines!

The Evolution of “Lead Free” Plumbing

When the Safe Drinking Water Act (SDWA) was amended in 1986, it mandated that residential plumbing could not use any pipe, pipe fitting, solder, flux, or fixture that was not “lead free.”  While the term “lead free” seems pretty straightforward, the law allowed for the definition of "lead free" to evolve.  The chart below shows allowable lead levels in solder, pipes, fittings, and fixtures through the 25+ years that lead was phased out of plumbing.  It's worth pointing out that, it wasn’t until very recently (2014) that all pipes/fittings/fixtures used for drinkable water were required to contain negligible amounts of lead.

Maximum Levels of Lead Allowed in Residential Plumbing 

 Years  Solder/Flux Pipes, Fittings, Valves
Before 1986 50% 100%
1986-2014 0.2% 8%
After 2014 0.2% 0.25%

Note:  Things like toilets, urinals, bidets, tub fillers, shower valves are excluded from these regulations 

How to Determine If Plumbing in Your Home Is Lead Free

Solder:  Unfortunately, there is no easy way to visually tell how much lead is in soldered joints after the connection is made.  If you are getting plumbing work done, it's ok to ask your plumber to see the package for the solder that they are using.  It should prominently say “lead free” on it.

Pipes/fittings:  Because there are certain applications (toilets, showers, tub fillers) where plumbing components are allowed to contain lead, you can still buy lead-containing plumbing components at the hardware store.  We have seen many applications in customers' homes where lead-containing components were mistakenly used in an application that required lead free components.  Anything that complies with the 2014 lead free standard is clearly marked with some sort of "LF" or checkmark label to indicate that it meets the most recent lead free standard:
How To Identify Lead Free Plumbing 1Lead Free Brass Ball Valve
How To Identify Lead Free Brass Connections
How To Identify Lead Free Brass Plumbing
Lead Free Plumbing ValveLead Free Marking On Brass Ball Valve

What To Do If Your Home Has Lead Plumbing

As the US has become increasingly aware of lead contamination in drinking water because of the ongoing crisis in Flint, recent violations in large cities like Pittsburgh, and longstanding lead problems in old cities like Chicago and New York City, more and more people are asking what they can do to minimize their family's exposure to lead.  

The best way, bar none is to:

If you are unable to use a rated filter, or if the filter you use does not protect against lead (like most pitchers and fridge filters), you can take the following steps to minimize exposure:

  • Allow your faucet to run for at least 2 minutes before collecting water for consumption (drinking/cooking/washing food).   Doing so allows the water sitting in the pipes to flush out and be replaced by fresh water flowing through the large mains.  
  • Only use the faucet at a slow flow rate when collecting water for consumption.  Doing so minimizes the amount of lead particulates that can be swept into the stream and carried to the faucet.

As always, we encourage everyone to take advantage of Hydroviv's "Help No Matter What" technical support policy, where we answer questions related to drinking water and water filtration, even if you have no desire to purchase our products.  Drop us a line about lead pipes in homes at support@hydroviv.com, or use our live chat function.  

Related Articles:

Does New York City Tap Water Expose More People To Lead Than Flint?
Pittsburgh's Lead Level Exceeds EPA Limits In 2016
Why You Are Being Mislead By Your TDS Meter

Why Does Washington, DC Water Taste Bad Right Now?

Analies Ross-Dyjak | Water Nerd   

Our Water Nerds have received a ton of questions about a noticeable change in the taste and smell of Washington DC's tap water. While we've heard lots of interesting hypotheses, what's really happening is that the Washington Aqueduct (where DC Water purchases water from) has recently switched over its disinfectants from chloramine to chlorine, for an annual "Spring Cleaning" of the distribution lines. DC residents can expect funky-tasting water from March 25-May 6, 2019.

How Are Chloramine and Chlorine Different?

We answer this question in much more detail in a different post, but here's the skinny on chlorine in drinking water: Like a growing number of US cities, Washington, DC uses chloramine as the primary disinfectant for a couple of reasons:
  1. Chloramine persists longer in the distribution system, so it does a better job killing bacteria in areas of the water distribution system that are near the end of the pipes, or don't have as high of flow as other areas.

  2.  It forms fewer disinfection byproducts in the presence of organic matter.

  3.  Chloramine-treated water doesn't have as strong of a taste as chlorine-treated water.

While these are all great reasons to use chloramine, most cities that use chloramine undergo a more aggressive disinfection cycle for a few weeks each year (aka Spring Cleaning).  

What Are The Impacts of Switching to Chlorine?

People often find that the water tastes and smells like pool water during the disinfectant switch, in addition to your bathroom smelling like swimming pool's locker room after showering. If you want to fix this problem... you have a couple of options that don't involve bottled water (horrible for the environment and less regulated than tap water!).
  1.  Get a water filter that's designed to handle it (and lead, chromium 6, VOCs...)!

  2.  If you let chlorinated tap water sit in a pitcher overnight, a good amount of the chlorine taste and smell will go away.  However, many people find that the water tastes "stale" when this happens (from the less volatile disinfection byproducts).

When Will Washington, DC's Water Switch Back Over to Chloramine?

The "Spring Cleaning" period is scheduled to take place from March 25 until May 6, 2019. After May 6, the water utility provider will switch the disinfectant back over to chloramine. Until then... non-Hydroviv users will just have to hold their noses!

Other Great Articles We Think You'll Love:
Tap Water Chlorination:  The Good, The Bad, The Unknown
What Are Disinfection Byproducts and Why Should I Care?
Fluoride in Municipal Tap Water:  What You Need To Know
Why Are So Many Schools Testing Positive For Lead In Drinking Water?

Why Are So Many Schools Testing Positive For Lead In Drinking Water?

Eric Roy, Ph.D.  |  Scientific Founder  

***Modified on August 23, 2018 to include more cities and add a video ***

With more schools in major cities testing positive for lead contamination (e.g. New York CityCleveland, Chicago, Portland, Newark, San Francisco), we get lots of questions about what’s happening.  The goal of this article is to shed some light on why lead in school drinking water is such an important thing.

Children Are Most Sensitive To Lead Poisoning

There is no level of lead that is known to be safe for children.  Period. 

Since lead contamination in tap water entered the spotlight in 2015, people have incorrectly presented EPA's regulatory limits as safe/not safe thresholds.  While a simple safe/unsafe threshold would certainly make things more simple, the 15 ppb threshold was never intended to be a "safe level."  It’s a limit that EPA established to evaluate city-wide corrosion control practices and it allows a city to have up to 10% of samples test ABOVE the 15 ppb threshold, and still be in compliance with the Lead and Copper Rule.  For reference, the American Academy of Pediatrics is calling for regulatory changes that ensure that water never tests above 1 ppb in schools.

Most Schools Are Old & Old Plumbing Often Contains Lead

According to data assembled by the U.S. Department of Education, the average age of a Public School building in the United States is 44 years old, a time when lead-based plumbing was the norm.  Even in newer schools, lead contamination can creep into water because lead wasn’t completely phased out of plumbing connections, fittings, and valves until 2014.

Weekends & Summers Allow Water To Sit Stagnant For Extended Periods Of Time In Schools

As many now realize, lead accumulates in water when it leaches from lead-containing pipes, valves, and plumbing connections.  The longer water sits stagnant in pipes, the more lead it can accumulate.  Unlike in homes, where water is used on a daily basis and never sits stagnant for more than a few hours each night, water in schools goes completely unused for long periods of time each weekend, vacation, and summer.  These frequent long periods where water is not used are detrimental for two reasons: 

1.  Lead has more time to accumulate as water sits stagnant in lead-containing pipes

2.  The lack of flushing prevents corrosion measures from rebuilding the protective layer that prevents lead from leaching out in the first place. 

Most Schools Do Not Test Water Properly For Lead Contamination

It sounds crazy, but most schools don’t test for lead contamination in water.  When asked by a reporter about testing the school’s water for lead, an elementary school superintendent went on record to say that "We do not test because it has never been brought up as a concern, nor is it a requirement to do so."

The reality is, even if schools choose to test for lead contamination, it’s much more complicated than testing in a residential home.  In a residential home, EPA sampling protocols require that water be unused for 6 hours, in order to simulate the night and work day periods where water commonly sits stagnant in pipes.  However, this protocol does not mimic how water is used in schools, because in addition to the 12 hours each school night the water goes unused, it sits stagnant for roughly 60 hours each weekend, and much longer periods over school vacations and summer.  

How Can Schools Reduce Lead Contamination In Drinking Water?

Realistically, it’s probably cost-prohibitive for schools to replace all lead-containing plumbing or buy and maintain effective point of use drinking water filters that remove lead.  When school administrators approach us for solutions, we always advise them to take immediate steps to identify lead containing plumbing, test their water for lead, and to implement regular pipe flushing protocols.

We encourage everyone to call their city's school department to better understand if and how lead is being tested for in schools.  Because testing in schools is very complicated, we encourage people to ask for specifics of the testing program and actual results, not blanket assurances that everything is ok.   As always, we encourage all readers to take advantage of our “Help No Matter What” approach to technical support.  Technical support will answer your questions through email (support@hydroviv.com), free of charge, even if you have no plans to purchase a Hydroviv water filter.

Originally published on January 28, 2017.  Updated May 9, 2017

Related Articles:

Does New York City Tap Water Have A Lead Contamination Problem?
Pittsburgh's Lead Level Exceeds EPA Limits In 2016
Why You Are Being Mislead By Your TDS Meter

What Do Municipalities Do To Prevent Lead From Leaching Into Drinking Water?

Analies Dyjak | Policy Nerd   

Flint, Pittsburgh, Providence, and Portland are just some of the major U.S. cities dealing with high levels of lead in drinking water. Since Pittsburgh just began adding Orthophosphate to its distribution system, we decided to put together an article explaining what exactly this treatment technique is, and other popular municipal treatment techniques used for lead mitigation.

Why Is Lead Such A Big Problem And What Are We Doing To Fix It?

The 2014 drinking water crisis in Flint, Michigan made municipalities around the country turn the mirror on their own problems with lead contamination. Lead remains a major issue for cities and towns throughout the entire country. It may feel like Americans have been talking about lead exposure for years, so why is it still such a big problem? The answer is pretty simple: Homes in the U.S. built before 1986 most likely contain lead pipes, plumbing, and solder. To make matters worse, water distribution lines also tend to adhere to this cutoff date. Lead is still a big part of infrastructure in the United States.

Since municipalities are tasked with mitigating lead exposure, we wanted to go over some popular treatment techniques that are being used throughout the United States, and their effectiveness at removing lead from drinking water.

Orthophosphate: Corrosion Inhibitor

Orthophosphate is a common system-wide corrosion inhibitor. It’s created by combining phosphoric acid with zinc phosphate and sodium phosphate. Together these chemicals create a mineral-like crust on the inside of lead service lines. If municipalities are willing to follow a strict dosing and monitoring schedule, orthophosphate can be extremely effective at reducing lead levels in drinking water.

Other larger cities around the country have also adopted Orthophosphate as a solution for lead-contaminated drinking water. In June of 2004, Washington, D.C. introduced orthophosphate to its distribution system, following major District-wide lead contamination. 

According to EPA, the health effects of phosphates are not well known and FDA has stated that they’re “generally recognized as safe.” The Lead and Copper Rule requires the use of polyphosphate or orthophosphate whenever a municipality is in exceedance of lead standards set by EPA. Both have been cited as effective, but some municipalities disagree. According to city officials in Madison, Wisconsin, utility providers tried both of these additives and neither of them effectively reduced lead levels in drinking water. Because they were unable to find a corrosion inhibitor that worked, Madison officials decided to mandate the removal of all lead service lines.

It’s important to remember that orthophosphate isn’t a permanent fix, nor does it magically remove lead pipes. Orthophosphate has been cited by EPA as an “interim Optimal Corrosion Control Treatment (OCCT) modification.” It will also increase your water bill. In Washington, D.C., orthophosphate costs DC Water customers approximately $700,000 annually.

Problems With Partial Lead Service Line Replacements

Partial service line replacements are another mitigation tool used to reduce lead exposure. To put it candidly: it's extremely invasive. People are often surprised to learn that lead levels actually increase in the months following a partial service line replacement. Water that comes in contact with lead-laden debris or freshly uncovered piping can easily become contaminated. This type of disruption negates any sort of expensive treatment being used by a utility provider, like orthophosphate. If a municipality is in exceedance with the 15 part per billion Action Level, they are mandated (under the Lead and Copper Rule) to replace a certain percentage of lead service lines every year. If you’re curious municipal requirements under the Lead and Copper Rule, click here!

Who Pays For Lead Line Replacements?

Ratepayers are typically responsible for paying for public water line replacements. However, homeowners are responsible for covering the cost of replacing lead service lines that distribute water directly into their homes. According to EPA, a homeowner that elects to do so can expect to pay anywhere from $2,500 to $8,000 per line. This is not feasible for most households in the United States. Additionally, people are still at risk of lead exposure because lead pipes may still exist at various locations throughout a distribution system. Some municipalities offer subsidies or rebates on private lead service line replacements, but not all.  In Madison, Wisconsin for example, homeowners who are eligible can apply for a rebate which covers up to $1,500 of the line replacement.

Can pH Reduce Lead In Drinking Water?

Many municipalities believe that adjusting the pH of drinking water is the best way to reduce lead exposure, and here’s why: Acidic water increase corrosivity, which causes lead pipes to leach into drinking water. The idea is that by making water more alkaline (opposite direction on the pH scale), the corrosivity will decrease. This may sound good in theory, but a municipality must still correct for chloride when doing so. According to the World Health Organization, chloride “increases the electrical conductivity of water and thus increases its corrosivity” and “increases the rate of pitting corrosion of metal pipes.” Similar to the other treatments mentioned in this article, changing the pH of drinking water does not get rid of lead service lines. Additionally, maintaining a balanced pH throughout an entire distribution system is not an easy task.

How Do You Know If Lead Treatment Works?

Lead is different from other contaminants because problems arise at the tap, rather than the source water. The only way to truly know if a corrosion control method is working is to test every single tap (which is completely unfeasible). Under the Lead and Copper Rule, most municipalities are only required to test 50-100 homes every 3 years or every monitoring period. This is not nearly enough data for a larger municipality like New York City. There’s just no way to know if a system-wide treatment technique is working to the best of its ability, so the burden and responsibility is on the consumer. 

Other Articles We Think You Might Enjoy:
Lead: What You Need To Know
Orthophosphate and Lead Contamination
Why Are So Many Schools Testing Positive For Lead?
Recap of the 2018 PFAS National Leadership Summit and Engagement

Recap of the 2018 PFAS National Leadership Summit and Engagement

***Updated 5/30/2018 to include video

Analies Dyjak | Policy Nerd

Scott Pruitt has finally decided to address a class of contaminants that Hydroviv has been tracking for years. The 2018 PFAS National Leadership Summit and Engagement began yesterday, May 22nd, at EPA headquarters here in Washington, D.C. The goal of the summit is to bring together states, tribes, and territories who have been adversely affected by Per and Polyfluoroalkyl Substances (PFAS), a class of dangerous emerging contaminants. If you live in Wilmington, North Carolina or near Maplewood, Minnesota, you are probably very familiar with PFAS contamination. This class of chemicals was historically used in food packaging, Teflon, Scotchgard, fire fighting foam, and has now invaded many drinking water sources in the United States.

EPA PFAS Summit Recap

Pruitt sounded hopeful in his opening remarks on Tuesday. He stated that PFAS contamination is a “national priority” and that EPA is “developing groundwater cleanup recommendations.” He also announced that EPA is working to create a 4-step action plan. A major component of this plan is to set Maximum Contaminant Levels (or MCLs) that municipalities would be required to meet. MCLs are enforceable limits that are set as close to a “no risk” level as possible. Many states such as New Jersey, voiced their concerns on the lengthy time scale that it typically takes EPA to set drinking water standards. States have jurisdiction to create their own more stringent drinking water standards, but again, this is a lengthy and expensive process.

How Will PFAS Be Regulated? 

The Safe Drinking Water Act only regulates public drinking water systems that supply at least 25 people at 15 service connections. Private well users will not be regulated by the proposed PFAS Maximum Contaminant Levels. It’s also important to mention that through the Safe Drinking Water Act, municipalities bare the burden of meeting these drinking water quality standards. Because PFAS contaminants are so complex, complete removal at the municipal level is impossible without spending a small fortune for advanced technology that may not even be effective. A representative from the Agency for Toxic Substances and Disease Registry (ATSDR), agreed that the toxicological profiles for various types of PFAS would be released as soon as possible. The same representative also stated that the minimal risk level for PFAS should be dropped to 12 parts-per-trillion instead of the current EPA health advisory level of 70 parts-per-trillion. Some scientists believe that even this threshold is still too high. The health director of the Natural Resources Defense Council recommends that PFAS standards should be set in the 4-10 parts- per-trillion range. These conflicting opinions demonstrate just how ambiguous water quality standards are in this country.

History of Drinking Water Regulations

Although one might be quick to point fingers at the current administration, Scott Pruitt isn’t completely to blame for weak water quality standards. In fact, none of the recent EPA administrators have seriously taken on water quality regulations. After the major environmental policy reform in the early 1970’s, there hasn’t been a real push to amend important statutes that protect waters of the US. Certain drinking water standards that were set in the 1970’s are still acting as the federal floor today. Drinking water regulations have been in a state of limbo ever since the 1996 Amendments of the Safe Drinking Water Act. These amendments, developed under the Clinton Administration, addressed important gaps in the original 1974 statute. Unfortunately, since the 1996 amendments, entirely new classes of harmful contaminants have become prominent in our nations’ waters. Emergent chemicals such as PFAS weren’t mentioned in the 1996 amendments because regulators were unaware of just how dangerous they would become to human health. Again, we cannot completely blame this current administration. The scientific community has known about PFAS-like compounds for decades and still minimal action has been taken to mitigate exposure.

Future PFAS Standards & Regulations

As a result of this summit, PFAS will most likely not become a federally regulated contaminant. As we’ve stated before, the regulatory process for drinking water standards can take decades. The United States has a long way to go to improve the process of creating and setting federal drinking water standards. Making data available and learning more about these sophisticated emerging contaminants are important steps in mitigating exposure.

The good news is that our filters have been laboratory approved to remove PFAS! If you have any questions regarding PFAS or Hydroviv filters, send us an email at hello@hydroviv.com or use the chat function on our website. 

 

Other articles we think you might enjoy:
Minnesota PFAS Contaminatation
What you need to know about Perfluroalkyl and Polyfluoroalkyl Substances (PFAS)
GenX Contamination in Drinking Water


Why Does Washington, DC's Water Taste Bad?

Why Does Washington, DC's Water Taste Bad?

Updated March 26, 2018 with 2018 dates and the 2018 video.
Starting today (March 26), we have had lots of questions about a noticeable chance in Washington DC's tap water taste.  While we've heard lots of interesting hypotheses, what's really happening is that the Washington Aqueduct (where DC Water purchases water from) has recently switched over from chloramine to chlorine for an annual "Spring Cleaning" of the distribution lines.

How Are Chloramine and Chlorine Different?

We answer this question in much more detail in a different post, but here's the skinny on chlorine in drinking water:  Like a growing number of US cities, Washington, DC uses chloramine as the primary disinfectant for a couple of reasons:

1.  It persists longer in the distribution system, so it does a better job killing bacteria in areas of the water distribution system that are near the end of the pipes, or don't have as high of flow as other areas.

2.  It doesn't form disinfection byproducts in the presence of organic matter.

3.  Chloramine-treated water doesn't have as strong of a taste as chlorine-treated water

While these are all great reasons to use chloramine, most cities that use chloramine undergo a more aggressive disinfection cycle for a few weeks each year (aka Spring Cleaning).  

What Are The Impacts of Switching to Chlorine?

During this time, some people find that the water tastes and smells tastes bad, and the bathroom smells a bit like a swimming pool's locker room after showering.  If you want to fix this problem... you have a couple of options that don't involve bottled water (horrible for the environment).

1.  Filter your water

2.  If you let chlorinated tap water sit in a pitcher overnight, a good amount of the chlorine taste will go away.

When Will Washington, DC's Water Switch Back Over to Chloramine?

May 7 is the day that DC Water plans to switch back over to chloramine.  Until then... non-Hydroviv users will just have to hold their noses!

 

Other Great Articles We Think You'll Love