Water Quality Articles | Water Filter Information & Articles – Tagged "water" – Hydroviv
EPA Proposes New Definition of "Waters of the United States"

EPA Proposes New Definition of "Waters of the United States"

Analies Dyjak & Matthew Krug   

February 14th 2019: The Department of the Army and the Environmental Protection Agency  posted the newly proposed “Waters of the United States” rule to the Federal Register. At its core, the proposed EPA WOTUS rule limits the water that EPA can regulate and monitor. By narrowing the scope of WOTUS definitions, this basically gives industries a roadmap of where it’s okay to pollute without the need for permitting. This is a big deal for the 45 million Americans who rely on well water for drinking and bathing. So, why should you care about the definition of waters of the United States?

"Waters of the United States"

This definition, also known as “WOTUS” has been up for debate for decades, and it’s interpretation has seen several Supreme Court cases. This proposed rule determines what waters the federal government is able to regulate and monitor. Generally, “waters” have traditionally been navigable waters such as oceans, rivers, ponds, and streams. As our scientific understanding of hydrology has improved, the scope of what are considered “waters” has expanded.

What Is Not Protected Under The Proposed Rule?

WOTUS definitions name certain waters as “excluded,” which, in this case, means they do not have a surface water connection. This means that groundwater, ephemeral streams, ditches, prior converted cropland and some wetlands and ponds are not included. This is a continued rollback of environmental regulations - and the 2019 EPA WOTUS rule propsal may have the farthest-reaching implications of all.

How Does This Proposed Rule Affect Drinking Water?

This rule puts the 45 million Americans that use private wells as a primary source of drinking water at risk. Private wells are not regulated by federal, state, or local governments, and agencies are not required to test for contaminants or ensure “compliance.” A 2006 study by the USGS concluded that private wells are already contaminated with various types of agricultural runoff, solvents, fumigants and inorganic compounds, the most common being arsenic and nitrates. Arsenic is a naturally occurring organic compound, that enters groundwater as bedrock weathers overtime. However, nitrates are used in fertilizers and enter both surface and groundwater from agricultural runoff. 8.4% of the wells tested in this study were in exceeded the federal standard for nitrates (we have an article dedicated specifically to nitrates in groundwater). Further, EPA does not provide recommended criteria or standards for private well users. By rolling back protections, private well users are being further kept in the dark.

How Did They Arrive At this Rule?

The proposed EPA WOTUS rule is primarily based off a majority opinion by Justice Scalia in the Supreme Court case Rapanos v. United States. Scalia’s interpretation favored “traditional waters,” and steered away from Justice Kennedy’s “significant nexus theory.” In his majority opinion, Scalia wrote that federal protections should cover:

“...only those wetland with a continuous surface connection to bodies that are waters of the United States.”

Who’s Driving?

The American Farm Bureau dominated the conversation at the press conference for the proposed EPA WOTUS rule in early December of 2018. Industries lobbied hard to limit the scope of jurisdictional waters. In a political landscape where there is an abundance of legislation grandfathered in to protect the chemical, fossil fuel, and agricultural industries, it should come as no surprise that the current administration did not break from tradition. The agricultural industry is not the only institution who will benefit from this proposed rule. Chemical manufacturing companies have to go through a rigorous permitting process determined by state or federal governments (NPDES) which regulate pollution. But now, with a clearly defined and reduced scope of what constitutes a water of the United States, these companies are able to map out how to circumvent regulation.

The federal government has designated this as “economically significant”

This means that the proposed rule with have an annual effect on the economy of $100 million or more. 

Our Take:

This proposed WOTUS definitions puts the 15% of the country at further risk of groundwater contamination. This population of people are now on their own in terms of monitoring their drinking water and keeping up with land use changes. Our science team will be submitting public comments on this proposed rule, which will be available on our website in the upcoming weeks. We encourage our readers to do the same thing! CLICK HERE for the link to the WOTUS public comment page.

Other Articles We Think You Might Enjoy:
5 Reasons Why Bottled Water Isn't The Solution To Drinking Water Contamination
Nitrates In Drinking Water
Why Runoff From Farms Is A Big Deal
5 Reasons Why Bottled Water Isn't The Solution To Drinking Water Contamination

5 Reasons Why Bottled Water Isn't The Solution To Drinking Water Contamination

Analies Dyjak | Policy Nerd   

Whenever severe water contamination impacts a community, people (and media outlets) tend to jump to bottled water as the only water contamination solution.
The bottled water industry has managed to convince vulnerable consumers that their product is inherently safer than what’s coming out of their taps. Oftentimes, this isn’t the case. So why is bottled water bad? The reality is that bottled water is associated with a host of ethical, environmental and regulatory problems. Drinking bottled water is not a long-term solution to water contamination, and we should critically examine its role as water quality crises continue to pop up across the country. Here are our main problems with the bottled water industry to give you a better idea of why bottled water is bad.

1) Bottled Water Companies Use The Same Source As Tap Water

According to the FDA, bottled water companies are permitted to package and sell water from municipal taps, artesian wells, mineral water, natural springs, and drilled wells. Surprisingly enough, they aren’t required to disclose the source water itself. If you’re looking for transparency, municipal systems are required to publish an annual Consumer Confidence Report (CCR) that discloses characteristics about the source water, treatment techniques, and other distribution information. The bottled water industry also frequently packages and distributes groundwater from dug wells. Groundwater can often be more susceptible to pollution than surface water because it’s not regulated by the federal government. Groundwater acts as a catchment for surface water runoff and agricultural pollution, not to mention its increased risk of arsenic contamination.

2) Bottled Water and Tap Water Have Almost Identical Standards

People are often surprised to learn that there’s virtually no difference between the regulations for bottled water and tap water. The Environmental Protection Agency regulates tap water and the Food and Drug Administration regulates bottled water. The allowable concentrations of contaminants are identical for both, with the exception of lead. The standard for lead in bottled water is 5 parts per billion, as opposed to 15 parts per billion in tap water. This is because during bottling production, water should never come in contact with older lead service pipes the same way municipal water does. Arsenic can be present in groundwater as a result of natural weathering of bedrock. Exposure to arsenic in drinking water can result in cancers in various organs, including skin, bladder, lung, kidney, liver, and prostate. Non-cancerous health effects include neurological damage, such as peripheral neuropathy. 

3) Impacts On The Environment

It’s well-documented that single-use plastic water bottles wreak havoc on the environment. Plastics are made from petroleum, which is a fossil fuel and a non-renewable resource. Companies often tout their commitment to reducing plastic consumption by weight, but this has no bearing on the volume at which it’s produced. You may be familiar with “Trash Island,” in the Northern Pacific Ocean. This phenomenon is the result of decades of poor waste management and excessive production of various types of plastic. According to a 2016 study by the Ellen Macarthur Foundation, the ocean will contain more plastic by weight than fish by the year 2050. Polyethylene Terephthalate (PET) is the main ingredient in plastic water bottles. PET takes over 400 years to decompose in the environment and its constituents can often take longer to degrade. Chemicals like Bisphenol A (BPA) have since been phased out of plastic production, but are still very much present in the environment and will continue to be released as older plastics degrade.

4) False Advertising

Marketing schemes deceive consumers into believing that companies use pristine source water. The packaging uses carefully curated images of mountain-top creeks and streams to suggest pure, untainted products. The reality is bottled water hardly ever comes from the sources depicted on the label.

5) Ethical Dilemma

Nestle, a company with a long track record of unscrupulous business practices, owns deep aquifers throughout California, a state which has been experiencing drought-like conditions for several decades. The expensive equipment purchased by Nestle allows the company to extract water in a way that tribes and municipalities cannot afford to do. Similar companies have been known to use their purchasing power to acquire land, pushing tribes and municipalities out of the conversation. Problems arise when drought-stricken or contaminated communities are unable to afford the same resources as bottled water companies.

Our Take:

While bottled water offers some measure of immediate relief to a severe drinking water crisis, it is in no way a long-term water contamination solution. Companies often sell the same water that’s feeding municipal systems. Not to mention, EPA and FDA have almost identical regulations for both tap and bottled water. There’s also an inherent cost associated with bottled water, which varies depending on the brand. Finally, a huge part of why bottled water is bad is that scientific data confirms the importance of reducing plastic pollution on a global scale. Municipal providers offer greater transparency and are required to disclose information about the source water. 

Other Articles We Think You Might Enjoy:
Microplastics In Water: What You Need To Know 
Endocrine Disruptors In Drinking Water
Water Conservation and Water Quality In The Sports Industry
A Deeper Dive Into The CNN Report on America's Drinking Water

A Deeper Dive Into The CNN Report on America's Drinking Water

*Map courtesy of the Natural Resources Defense Council*

Analies Dyjak | Policy Nerd 

Our inbox has been inundated with questions regarding the NRDC drinking water report that CNN retreated yesterday. We wanted to add some context and remind readers that these developments are not new. The scope of the drinking water problem in this country is much broader than the 90 federally regulated contaminants highlighted in the report. 

With myriad water quality crises popping up all over the country this past year, the topic of drinking water quality has once again commanded national media attention. CNN recently published an article underlining a 2017 report by the Natural Resources Defense Council.

Major Takeaways:

  1. It’s not easy to violate a drinking water standard. In fact, drinking water regulations are set so high in the United States that it’s surprisingly difficult for a municipality to surpass a federal threshold. The consensus in the scientific and toxicological community is that federal standards should be reduced across the board.

  2. Why is the conversation being limited to regulated contaminants? For a bit of perspective, EPA regulates 90 drinking water contaminants that municipalities must comply with. These regulated contaminants include lead, arsenic, disinfection byproducts, and others. There are thousands, if not hundreds of thousands of potentially dangerous unregulated contaminants. Despite this growing problem, the CNN report focused entirely on the 90 federally regulated contaminants, which doesn't even scratch the surface of America's drinking water crisis. 

  3. The article is vague about what constitutes a "violation." Municipalities can receive a violation from the state, or primacy agency for different reasons. Municipalities can be in violation if they are "out of compliance" or "in exceedance" of a drinking water standard. However, municipalities that fail to report data or test for a contaminant may also receive a violation. There's very little enforcement or repercussions imposed on municipalities that have violations, and often community members are left in the dark. 

How Can We Determine The Actual Scope of Drinking Water Contamination In The United States?

Figuring out the scope of this problem is extremely difficult, due to the slow-moving regulatory process and missing data. EPA estimates it would cost $743 billion to mitigate only the regulated contaminants in the U.S., meaning it would do nothing to address unregulated contaminants like Chromium 6, PFAS, and 1,4-Dioxane. Communities like Madison, Wisconsin could theoretically receive a gold star when looking at their compliance for regulated contaminants. Madison has low levels or lead, disinfection byproducts, and arsenic - all well within EPA standards. People are often surprised to find out that Madison has screamingly high levels of Chromium 6, which is also known as the "Erin Brockovich" chemical (the movie came out almost 20 years ago, and the contaminant is still unregulated). According to the most recent report, the average concentration of Chromium 6 in Madison is 1400 parts per trillion. This is 70 times higher than the concentration determined to have a negligible impact on cancer risk. 

America’s drinking water is more widespread than you think, and the scope of the problem goes well beyond the 90 contaminants addressed in the article.  We must look beyond annual Consumer Confidence Reports to unveil the truth about our water.  

Other Article We Think You Might Enjoy:
Why Are So Many Schools Testing Positive For Lead In Drinking Water?
GenX Is Linked To Cancer
How Does Fracking Pollute Drinking Water?
BREAKING: EPA Admits GenX Linked To Cancer

BREAKING: EPA Admits GenX Linked To Cancer

Analies Dyjak | Policy Nerd   

Our blog has been following PFAS contaminants such as the GenX chemical for months now, often reporting on new developments before mainstream news.
Today marks an important milestone: EPA has released a draft toxicity profile for GenX. This long-awaited toxicity report contains critical information for many states who have been seeking answers on this harmful contaminant.

EPA’s Draft Toxicity Assessments for GenX and PFBS:

EPA determined a candidate Chronic Reference Dose of 0.00008 mg/kg-day, or 80 parts per trillion. A reference dose is the daily oral intake not anticipated to cause negative health effects over a lifetime. A reference dose is not a carcinogenic risk factor, however, EPA states that the toxicity data for GenX are “suggestive of cancer.” According to the draft report, oral exposure in animals had negative health effects on the kidney, blood, immune system, developing fetus, and liver. The draft toxicity report also provided information on PFBS, which is a replacement chemical for PFOS. The candidate Chronic Reference Dose for PFBS is 0.01 mg/kg-day, and there was insufficient data to determine its carcinogenic potential.

What Is GenX?

GenX is part of a category of contaminants called PFAS, or per and polyfluoroalkyl substances. The GenX chemical linked to cancer has gained national attention since being discovered in the Cape Fear River in June of 2017.
PFAS have historically been used in consumer products like Scotchgard, Gore-Tex, Teflon, and even the inside of popcorn bags. PFAS are also used in firefighting foam, which is the major source of its pollution in waterways across the country.

Background:

The Chemours plant in Fayetteville, North Carolina produces refrigerants, ion exchange membranes, and other fluoroproducts. They have been discharging liquid effluent into the Cape Fear River for years, which has contaminated drinking water for the entire area. GenX is the replacement chemical for PFOA. After PFOA was discovered to be toxic, manufacturers addressed the issue by making an equally-as toxic replacement. Manufacturers of PFAS have been doing this for years, which is why there are so many different variations present in the environment.

Is GenX Federally Regulated By EPA?

No. This means that municipalities are not required to test for PFBS or GenX in water. Additionally, this draft toxicity level is not a lifetime health advisory level, which states would be more inclined to follow.

When Will A Drinking Water Standard Be Determined?

Don’t hold your breath on anytime soon! The regulatory process can take decades, especially for such a persistent contaminant in the environment. This is more than enough time for adverse health effects to set in, and we recommend consumers do everything they can to learn about their water and protect themselves, rather than wait for the government to step in.

What Does This Mean For Me?

EPA is in the very early stages of determining a regulation or even health advisory for GenX. This draft toxicity level needs to go through public comment so that states, tribes, and municipalities can offer input and recommendations.  If you want to see third-party data on filters that remove GenX in water and other PFAS, click HERE. 

Other Articles About GenX:
Timeline: GenX In North Carolina
ASTDR Toxicological Profile for PFAS
GenX Contamination In Drinking Water: What You Need To Know
Newark, NJ Lead Crisis: The New Flint

Newark, NJ Lead Crisis: The New Flint

Analies Dyjak | Policy Nerd   

Lead concentrations in Newark's drinking water have been in exceedance of the Federal Action Level since 2015. The largest city in New Jersey has struggled to keep lead concentrations under the 15 part per billion threshold ever since the standard was set in 1991. Recent sampling has detected staggering concentrations of lead in Newark's drinking water, ranging anywhere from 58 to 137 parts per billion. You may be wondering why Newark's water crisis has not been thrust into the national spotlight. While Flint, Michigan captured the nation’s attention, the lead crisis in Newark remains largely underreported.

Lead: Newark, New Jersey

It's no secret that older municipalities have problems with lead contamination in drinking water. This is in part due to an aging infrastructure, and Newark, New Jersey is no exception. The city of Newark supplies 80 million gallons of water per day to over 300,000 customers. The Pequannock Water Treatment Plant treats water from the Charlotteburg Reservoir and supplies water to Newark’s North, West, South, and Central Wards. The Wanaque Water Treatment Plant is operated by the North Jersey District Water Supply Commission, which supplies water to the East Ward and part of the North and Central Wards. 

Misinformation 

Newark residents have repeatedly been ensured that their water is “safe to drink.” On page one of the most recent Consumer Confidence Report (CCR), the city’s mayor claimed that “the quality of our water meets all federal and state standards.” False. He continued to say that only “one or two” homes were in exceedance of the federal Action Level. Also false. The truth is that between January and June of 2017, 16 sites were in exceedance of the action level and from July to December 2017, 11 sites were in exceedance of the action level. Mayor Baraka defended his claims by saying that the source water is safe to drink. It's well understood that lead contamination occurs when water comes in contact with residential lead service lines, rather than when it leaves a treatment facility. The problem is most people stop reading once their city officials tell them their water doesn’t contain lead. In a perfect world, when a city official says something is "safe" you should trust and believe them. 

What Is A Safe Level Of Lead?

The American Academy of Pediatrics acknowledges that there is no safe level of lead for children. Again, a safe threshold does not exist. Childhood lead exposure can cause serious developmental problems that can manifest later in life. Adults may experience neurological and gastrointestinal effects, as well as an increased risk of miscarriages and stillbirths when exposed to high concentrations of lead. EPA set an Action Level of 15 parts per billion, but toxicologists agree that this federal threshold is far too high. 

Current Treatment Techniques in Newark, NJ

The chemistry of the water entering the Pequannock treatment facility is very different than the water entering the Wanaque treatment facility. Because of this, both facilities have their own unique treatment plans. The two distribution systems use different corrosion control technologies for reducing lead: 

  • Pequannock: sodium silicate dose of 12-15 mg/L (goal of 6 mg/L)

  • Wanque: 1.2 mg/L of orthophosphate

**Orthophosphate is a common corrosion inhibitor. It forms a mineral-like crust on the inside of lead service pipes. In some cases, sodium silicate can decrease lead concentrations by increasing the pH of the water. When sodium silicate was initially added to Newark water, it was believed to effectively prevent corrosion. Research has since found that sodium silicate isn’t always effective.**

Newark’s History of Lead Contamination

Elevated Lead Concentrations From Pequannock Water Treatment Plant Data (1992-2018)

Parameter

1992

1998

2003

2006

2012

2015

2017 (1)

2017(2)

2018(1)

90th Percentile

26.8

12.3

12.2

9.5

9.7

15.8

29.8

36.0

22.9

Number of Samples (n)

137

103

28

25

24

25

75

117

90

Number of Samples >15 ppb

37

7

0

0

0

3

24

34

16

Percent >15&<25ppb

15.3%

6.8%

0%

0%

0%

12%

16%

6%

7.8%

Maximum ppb

60.4

23

14.2

11.5

14

25

137

77.7

58.9

CONCENTRATIONS OVER 15 PARTS PER BILLION IN RED 

Elevated Lead Concentrations From Wanaque Water Treatment Plant Sampling Data (1992-2018)

Parameter

1992

2002

2003

2012

2015

2017 (1)

2017(2)

2018(1)

90th Percentile

25.7

11.2

8.4

6.2

2

7.4

8.7

8.7

Number of Samples (n)

93

114

29

27

27

46

67

49

Percent >15&<25ppb

12.9%

0%

0%

3.7%

0%

0%

0%

2%

Maximum ppb

49.4

14.9

12.3

19

37

84

46.1

182

CONCENTRATIONS OVER 15 PARTS PER BILLION IN RED

Questionable Sample Techniques:

As recent as September 10, 2018, Newark did not follow EPA sampling guidelines in accordance with the Lead and Copper Rule. Sampling occurred after a 6 to 12 hour stagnation period, which is compliant.  Faucets were then flushed for 10 minutes before a 500 mL sample was collected. Under 40 CFR 141.86 (b), the proper sampling technique is to take a 1 liter “first-draw” sample. Even so, first-draw samples aren’t always an accurate indication of lead in drinking water.

Failure of Orthophosphate As A Corrosion Inhibitor

This is not the first time Orthophosphate has failed as a corrosion inhibitor. Madison, Wisconsin gave Orthophosphate a shot in hopes of reducing city-wide lead levels. Madison city officials stated that Orthophosphate didn’t work, causing the city to adopt an expensive full lead service line replacement program. Phosphates are known to pollute waterways by causing algae blooms, which is why the Pequannock Plant is unable to add it upstream of Cedar Grove.

Environmental Justice

46% of the population in Newark speak a non-English language (a CCR in multiple languages is not available on the city’s website). The fundamental purpose of a disclosure is to communicate information. If people are unable to understand the information, then it isn't disclosure. This is further extrapolated when citizens are led to believe a false narrative.

Major Takeaways

  1. City officials failed to adjust corrosion control techniques after current methods were found to be ineffective

  2. Because of the effects on waterways, Pequannock is unable to add orthophosphate to incoming source water

  3. The Lead and Copper Rule doesn’t hold municipalities accountable for lead infractions, nor does it allow for direct and immediate action

  4. Sodium Silicate has been adjusting the pH without preventing corrosion for decades 

  5. Newark residents were continuously told that they didn't have a lead problem

Our Thoughts:

Addressing lead contamination at a system-wide level is not easy. We’ve seen this in Flint, Pittsburgh, Washington D.C., and Portland, Oregon (who won’t even admit that they have a lead problem). Simply put, 100 samples for a city of 300,000 is not enough, and 24 is unacceptable. Newark needs to work towards a greater level of transparency and accountability, but until then, consumers must protect themselves. 

Other Articles We Think You Might Enjoy:
The Lead and Copper Rule
Does Your Home Have Lead Plumbing? Here's How To Tell
Lead In Schools: Flint, Michigan
How Does Fracking Impact Drinking Water?

How Does Fracking Impact Drinking Water?

Analies Dyjak | Policy Nerd   

There’s no denying that fracking has changed the course of energy production in the U.S., but not without some serious environmental impacts. Fracking severely threatens groundwater aquifers that millions of Americans depend on for drinking water. The viral videos of people lighting their tap water on fire are real, and the risk to human health is significant. Here’s how fracking can affect drinking water.

How Does Fracking Pollute Drinking Water?

Fracking liquids can easily migrate to surrounding groundwater aquifers, either in the well injection stage or after they're transported offsite. A 2015 report by the California Office of Emergency Services concluded that 18% of fracking spills impact waterways. To give that statistic some real-world context, in North Dakota, 2,963,000 gallons of hydraulic fracturing liquid ended up polluting groundwater as a result of just 18 spills in 2015. 43 million people draw their drinking water from private wells, and are the most susceptible to pollution from fracking.

Fracking is an extremely water-intensive process. The amount of water required ranges anywhere from 1.5 to 16 million gallons per injection well. Natural gas producers then have to decide what to do with such high volumes of polluted water. Once the “produced liquid” has been used for extraction, it’s either; injected into a Class II well, reused in other hydraulic fracturing projects, or transported to a waste site.

Who Creates Setback Distances?

States have primacy over determining setback distances.

Colorado: Proposition 112

Some states recognize the serious and immediate threat that fracking has on drinking water. In Colorado, a question on the 2018 ballot addresses just that. Current state regulations require natural gas wells to be 500 feet from a home and 1000 feet from a “highly occupied structure” (school or apartment complex). Prop 112 would increase the setback distance to 2500 feet, or approximately a half mile. Health organizations argue that the proposed setback distance in Colorado still doesn’t go far enough, but is a step in the right direction.

Chemicals in Fracking Liquid

Fracking liquids are proprietary, meaning companies create their own unique chemical cocktails. Because fracking is exempt from the Clean Water Act, natural gas companies are not required to disclose what exactly they’re pumping into the earth. Between the years of 2005 and 2013, EPA was able to identify 1,084 different hydraulic fracturing chemicals. EPA concluded that 65% of the wells tested had methanol, hydrotreated light petroleum distillates and hydrochloric acid. Other popular fracking chemicals include arsenic, benzene, cadmium, lead, formaldehyde, chlorine, and mercury-- a great medley of both toxic carcinogenic compounds.

Health Effects

Common health effects of Hydrochloric Acid, one of the prominent fracking chemicals, include inflammation and ulceration of the respiratory tract, pulmonary edema, lesions of the upper respiratory tract, and corrosion of mucous membranes of the esophagus and stomach. Fetuses and young children are the most susceptible to the adverse health effects associated with fracking chemicals. A 2017 study concluded that in Pennsylvania, babies of moms who live within one kilometer (3280 feet) of a fracking site have a 25% greater chance of being born underweight, than expecting mothers that live 3 kilometers (9842 feet) away.

What Is The Halliburton Loophole?

In 2005, congress passed the Energy Policy Act, which exempted fracking from the Clean Water Act and Safe Drinking Water Act. This soon became known as the “Halliburton Loophole” for the extensive lobbying done by Halliburton Oilfield Service. Through this loophole, natural gas companies are not required to disclose extraction chemicals or other important water-related information. Natural gas companies are also not required to obtain National Pollution Discharge Elimination System (NPDES) permits. This eliminates pollution permits for; natural gas exploration, production, processing, treatment, transmission, and related activities.

Bottom Line:

While fracking provides American-produced energy, it also seriously threatens drinking water. And fracking isn’t going anywhere any time soon. Natural gas production is predicted to grow 40% in the next 20 years. This means more injection wells and more pollution. It’s up to industries and consumers to weigh the benefits with the costs of fracking.

Other Articles We Think You Might Enjoy:
How Does Stormwater Runoff Affect Drinking Water?
What Is "Safe" Drinking Water?
Why Does EPA Allow “Acceptable Amounts” of Toxic Chemicals In Drinking Water?