Water Quality InformationWritten By Actual Experts


EPA Proposes New Definition of "Waters of the United States"

Analies Dyjak @ Friday, February 15, 2019 at 3:01 pm -0500

Analies Dyjak & Matthew Krug

February 14th 2019: The Department of the Army and the Environmental Protection Agency posted the newly proposed “Waters of the United States” rule to the Federal Register. At its core, the proposed EPA WOTUS rule limits the water that EPA can regulate and monitor. By narrowing the scope of WOTUS definitions, this basically gives industries a roadmap of where it’s okay to pollute without the need for permitting. This is a big deal for the 45 million Americans who rely on well water for drinking and bathing. So, why should you care about the definition of waters of the United States?

"Waters of the United States"

This definition, also known as “WOTUS” has been up for debate for decades, and it’s interpretation has seen several Supreme Court cases. This proposed rule determines what waters the federal government is able to regulate and monitor. Generally, “waters” have traditionally been navigable waters such as oceans, rivers, ponds, and streams. As our scientific understanding of hydrology has improved, the scope of what are considered “waters” has expanded.

What Is Not Protected Under The Proposed Rule?

WOTUS definitions name certain waters as “excluded,” which, in this case, means they do not have a surface water connection. This means that groundwater, ephemeral streams, ditches, prior converted cropland and some wetlands and ponds are not included. This is a continued rollback of environmental regulations - and the 2019 EPA WOTUS rule proposal may have the farthest-reaching implications of all.

How Does This Proposed Rule Affect Drinking Water?

This rule puts the 45 million Americans that use private wells as a primary source of drinking water at risk. Private wells are not regulated by federal, state, or local governments, and agencies are not required to test for contaminants or ensure “compliance.” A 2006 study by the USGS concluded that private wells are already contaminated with various types of agricultural runoff, solvents, fumigants and inorganic compounds, the most common being arsenic and nitrates. Arsenic is a naturally occurring organic compound, that enters groundwater as bedrock weathers overtime. However, nitrates are used in fertilizers and enter both surface and groundwater from agricultural runoff. 8.4% of the wells tested in this study were in exceeded the federal standard for nitrates (we have an article dedicated specifically to nitrates in groundwater). Further, EPA does not provide recommended criteria or standards for private well users. By rolling back protections, private well users are being further kept in the dark.

How Did They Arrive At this Rule?

The proposed EPA WOTUS rule is primarily based off a majority opinion by Justice Scalia in the Supreme Court case Rapanos v. United States. Scalia’s interpretation favored “traditional waters,” and steered away from Justice Kennedy’s “significant nexus theory.” In his majority opinion, Scalia wrote that federal protections should cover:

“...only those wetland with a continuous surface connection to bodies that are waters of the United States.”

Who’s Driving?

The American Farm Bureau dominated the conversation at the press conference for the proposed EPA WOTUS rule in early December of 2018. Industries lobbied hard to limit the scope of jurisdictional waters. In a political landscape where there is an abundance of legislation grandfathered in to protect the chemical, fossil fuel, and agricultural industries, it should come as no surprise that the current administration did not break from tradition. The agricultural industry is not the only institution who will benefit from this proposed rule. Chemical manufacturing companies have to go through a rigorous permitting process determined by state or federal governments (NPDES) which regulate pollution. But now, with a clearly defined and reduced scope of what constitutes a water of the United States, these companies are able to map out how to circumvent regulation.

The federal government has designated this as “economically significant”

This means that the proposed rule with have an annual effect on the economy of $100 million or more. 

Our Take:

This proposed WOTUS definitions puts the 15% of the country at further risk of groundwater contamination. This population of people are now on their own in terms of monitoring their drinking water and keeping up with land use changes. Our science team will be submitting public comments on this proposed rule, which will be available on our website in the upcoming weeks. We encourage our readers to do the same thing! CLICK HERE for the link to the WOTUS public comment page.

Other Articles We Think You Might Enjoy:
5 Reasons Why Bottled Water Isn't The Solution To Drinking Water Contamination
Nitrates In Drinking Water
Why Runoff From Farms Is A Big Deal

How Does Fracking Impact Drinking Water?

Analies Dyjak @ Friday, November 2, 2018 at 2:34 pm -0400

Analies Dyjak  |  Policy Nerd

There’s no denying that fracking has changed the course of energy production in the U.S., but not without some serious environmental impacts. Fracking severely threatens groundwater aquifers that millions of Americans depend on for drinking water. The viral videos of people lighting their tap water on fire are real, and the risk to human health is significant. Here’s an answer to the question "does fracking pollute groundwater?"

How Does Fracking Pollute Drinking Water?

Fracking liquids can easily migrate to surrounding groundwater aquifers, either in the well injection stage or after they're transported offsite. A 2015 report by the California Office of Emergency Services concluded that 18% of fracking spills impact waterways. To give that statistic some real-world context, in North Dakota, 2,963,000 gallons of hydraulic fracturing liquid ended up polluting groundwater as a result of just 18 spills in 2015. 43 million people draw their drinking water from private wells, and are the most susceptible to pollution from fracking.

Fracking is an extremely water-intensive process. The amount of water required ranges anywhere from 1.5 to 16 million gallons per injection well. Natural gas producers then have to decide what to do with such high volumes of polluted water. Once the “produced liquid” has been used for extraction, it’s either; injected into a Class II well, reused in other hydraulic fracturing projects, or transported to a waste site.

Who Creates Setback Distances?

States have primacy over determining setback distances.

Colorado: Proposition 112

Some states recognize the serious and immediate threat that fracking has on drinking water. In Colorado, a question on the 2018 ballot addresses just that. Current state regulations require natural gas wells to be 500 feet from a home and 1000 feet from a “highly occupied structure” (school or apartment complex). Prop 112 would increase the setback distance to 2500 feet, or approximately a half mile. Health organizations argue that the proposed setback distance in Colorado still doesn’t go far enough, but is a step in the right direction.

Chemicals in Fracking Liquid

Fracking liquids are proprietary, meaning companies create their own unique chemical cocktails. Because fracking is exempt from the Clean Water Act, natural gas companies are not required to disclose what exactly they’re pumping into the earth. Between the years of 2005 and 2013, EPA was able to identify 1,084 different hydraulic fracturing chemicals. EPA concluded that 65% of the wells tested had methanol, hydrotreated light petroleum distillates and hydrochloric acid. Other popular fracking chemicals include arsenic, benzene, cadmium, lead, formaldehyde, chlorine, and mercury-- a great medley of both toxic carcinogenic compounds.

Health Effects

Common health effects of Hydrochloric Acid, one of the prominent fracking chemicals, include inflammation and ulceration of the respiratory tract, pulmonary edema, lesions of the upper respiratory tract, and corrosion of mucous membranes of the esophagus and stomach. Fetuses and young children are the most susceptible to the adverse health effects associated with fracking chemicals. A 2017 study concluded that in Pennsylvania, babies of moms who live within one kilometer (3280 feet) of a fracking site have a 25% greater chance of being born underweight, than expecting mothers that live 3 kilometers (9842 feet) away.

What Is The Halliburton Loophole?

In 2005, congress passed the Energy Policy Act, which exempted fracking from the Clean Water Act and Safe Drinking Water Act. This soon became known as the “Halliburton Loophole” for the extensive lobbying done by Halliburton Oilfield Service. Through this loophole, natural gas companies are not required to disclose extraction chemicals or other important water-related information. Natural gas companies are also not required to obtain National Pollution Discharge Elimination System (NPDES) permits. This eliminates pollution permits for; natural gas exploration, production, processing, treatment, transmission, and related activities.

Bottom Line:

While fracking provides American-produced energy, it also seriously threatens drinking water. And fracking isn’t going anywhere any time soon. Natural gas production is predicted to grow 40% in the next 20 years. This means more injection wells and more pollution. It’s up to industries and consumers to weigh the benefits with the costs of fracking.

Other Articles We Think You Might Enjoy:
How Does Stormwater Runoff Affect Drinking Water?
What Is "Safe" Drinking Water?
Why Does EPA Allow “Acceptable Amounts” of Toxic Chemicals In Drinking Water?

What You Need To Know About Manganese In Drinking Water

Analies Dyjak @ Thursday, October 18, 2018 at 12:19 pm -0400

Analies Dyjak  |  Policy Nerd

October 16, 2018: Windham, Ohio issued a “do not drink advisory” for Village Water Plant residents. Manganese was detected at concentrations over the Health Advisory Level. We wanted to discuss what exactly manganese is, potential health effects, and how it enters drinking water.

What Is Manganese?

Manganese is an extremely abundant earth metal. It’s naturally present in the environment, but is also used in iron and steel manufacturing.

Is Manganese Good For You?

In low doses, yes! According to the FDA, it’s important for bone mineralization and metabolic regulation in children. It also helps with cartilage and bone formation. It’s naturally found in foods such as beans, nuts, pineapples, spinach, sweet potatoes and whole grains. You’ve also most likely seen manganese tablets in the supplement isle of the grocery store!

What Are The Negative Health Effects of Manganese In Drinking Water?

Manganese can cause adverse health effects when concentrations exceed the Lifetime Health Advisory Level of 0.3 parts per million. Reports have concluded that chronic ingestion of water containing manganese may lead to neurological effects in older adults and infants. Long term exposure can cause lethargy, muscular weakness. In Windham, EPA set a “do not drink” advisory for infants under 1 year old and nursing and pregnant women. This is in part do to the fact that infants are the most sensitive population to any type of contamination.

What Causes Manganese In Drinking Water?

Clogged water lines typically cause concentrations of manganese to increase, which is what happened earlier this month in Windham, Ohio. Clogs prevent chlorine from entering the distribution system. Chlorine is an oxidant, and is typically used to treat manganese in drinking water. Water utility providers typically use chlorine to treat biological contamination, but it’s also used to reduce the concentrations of iron and manganese in drinking water. Exposure of high concentrations of manganese is possible if treatments (such as chlorine) fail. Private wells are not regulated and therefore not required to meet federally mandated drinking water standards. If you use a private well for drinking water, it’s important to keep this in mind for all types of contamination.

Will Boiling My Water Remove Manganese?

No. Boiling your tap water will not remove manganese, or other metals from drinking water. Boil advisories are typically issued if biological contamination is thought to pose a threat to a drinking water supply. People should always take drinking water advisories seriously, and listen to recommendations from city officials.

Manganese in drinking water is not a huge cause for concern, but it's important to be aware of the potential adverse health effects. It's also important to listen to boil advisories and other information regarding drinking water in your community. 

Other Articles We Think You Might Enjoy:
How Do I Test My Home's Water For Lead?
Why Are So Many Schools Testing Positive for Lead?
Why You Need To Stop Using a TDS Meter To Evaluate Your Home's Water Quality?

Orthophosphate and Lead Contamination in Drinking Water

Analies Dyjak @ Monday, October 1, 2018 at 1:10 pm -0400

Analies Dyjak  |  Policy Nerd

Lead contamination in drinking water is a huge problem for municipalities with an older infrastructure. Lead contamination occurs when water comes in contact with lead pipes. This article discusses a common additive used to combat lead pipe corrosion.

What is Orthophosphate?

Orthophosphate is a common corrosion inhibitor used by water suppliers to prevent lead pipes from leaching. When orthophosphate water treatment is added to a water source, it reacts with lead to create a mineral-like crust inside of the lead pipe. This crust acts as a coating which prevents further lead corrosion. The use of orthophosphate treatment in drinking water became popularized in 2001, during the lead crisis in Washington, D.C. Lead contamination in many cities including D.C. and Flint, occurs when a city’s water becomes more corrosive, which can allow for lead from pipes to leach into the drinking water supply. When the lead problem initially occurred, cities such as Flint, Michigan, Durham and Greenville, North Carolina, and Jackson, Mississippi didn’t learn from D.C’s mistakes and all had lead outbreaks. 

Does Orthophosphate Fix Lead Contamination?

It certainly can. Once the protective layer is formed, cities can find that lead concentrations in the water drop by 90%. However, Orthophosphate is somewhat of a bandaid to temporarily fix the presence of lead in drinking water. For example, if the protective layer is corroded away or otherwise disturbed (e.g. in the case of a partial service line replacement or the water’s corrosivity changes), lead can leach back into the water. Finally, not all municipalities are adding orthophosphate to drinking water because of its cost. If you have any questions regarding lead prevention in drinking water, send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead In Drinking Water: What You Need To Know
Lead and Copper Rule
Things To Know Before Replacing Your Home's Lead Service Pipes

How Does Stormwater Runoff Affect Drinking Water?

Analies Dyjak @ Tuesday, October 30, 2018 at 4:10 pm -0400

Analies Dyjak  |  Policy Nerd

As hurricane season is coming to an end, we wanted to let you know how heavy rains can impact drinking water. Here’s how stormwater runoff can affect your water.

How Does Stormwater Affect Drinking Water?

Heavy rain storms create a rapid influx of water, which can cause a host of health and environmental issues. Rainwater travels to low-lying bodies of water, including oceans, lakes, rivers, streams, and aquifers. Both surface and groundwater are susceptible to contamination from stormwater runoff, both of which are sources of drinking water. As water travels, it picks up loose debris, pesticides, herbicides, oil, and other types of pollution in its path. This cocktail of contaminants is then dumped into a nearby waterway. Some municipal water treatment facilities are equipped to deal with these types of contamination, while others are not. 86% of the U.S. population gets their drinking water from surface water sources, so maintaining clean lakes and rivers is extremely important for managing stormwater runoff pollution in drinking water.

What Are Combined Sewer Overflows or CSO’s?

Combined Sewer Overflows or CSO’s, are a system of underground canals that collect stormwater runoff, industrial wastewater, and sewage all in the same pipe. Under normal conditions, stormwater and sewage travels to a wastewater plant where it’s treated before being discharged into a body of water. During heavy rain events, the large influx of stormwater causes pipes to exceed the capacity of the the system. Untreated wastewater, including sewage, overflows into nearby oceans, lakes, rivers or streams or wherever a stormwater discharge output exists. CSO’s were used as early as the 1850’s, and were the only system in place to deal with such high volumes of water. Many cities have replaced CSO’s with advanced infrastructure, but cities such as Portland, Maine and Cambridge, Massachusetts still use them.

Impervious Surfaces and Stormwater

Impervious surfaces are developed areas where water is unable to infiltrate into the earth. This typically refers to paved roads, roofs, and sidewalks. When water is unable to infiltrate, it flows into the nearest body of water or wastewater system. Impervious surfaces are of concern because water picks up and carries dangerous contaminants, then deposits pollution into drinking water sources. Impervious surfaces also increase the impacts from floods. Unable to percolare, water sits on top of paved roads, increasing the flood potential and presence of biological contamination. As communities continue to develop, the area of paved or impervious surface increases as well.

Wetlands: Important for Stormwater Retention

Wetlands offer remarkable protection from the impacts of flooding and other stormwater damages. Wetlands absorb incoming water and release it slowly, acting as a natural sponge. According to the U.S Army Corps of Engineers, the state wetland conservation along the Charles River in Boston, Massachusetts saved approximately $17 million in potential flood damage. Additionally, wetlands naturally filter stormwater runoff pollution. The fast-moving water is slowed by vegetation, which allows suspended sediment and pollution to fall to the bottom.

Other Articles We Think You Might Enjoy:
Surface Water: What You Need To Know
Agricultural Runoff: Why It's A Problem And What's Being Done To Stop It
Nitrates In Drinking Water