Water Quality InformationWritten By Actual Experts

RSS

Superfund: San Antonio, Texas

Analies Dyjak @ Wednesday, June 13, 2018 at 1:48 pm -0400

Analies Dyjak  |  Policy Nerd   

This week, Hydroviv is highlighting the six new National Priorities List (NPL) sites under the EPA Superfund program. Superfund sites are home to high levels of hazardous soil and groundwater contamination from years of improper disposal techniques. If you’d like to learn more about the ins and out of Superfund, check out our recap HERE. The Superfund site that we’re addressing in this article is located in San Antonio, Texas.  

San Antonio, Texas is home to another newly designated EPA Superfund site. EPA detected high levels of cyanide, lead, cadmium, copper, selenium, zinc, chromium, and chromium 6. The source of contamination is from the River City Metal Finishing facility, which was in operation from 1994 to 2002. Throughout operation and post closure, runoff and pollution from this facility entered into the Edwards Aquifer which provides domestic, industrial and agricultural water for a majority of San Antonio. Concentrations of chromium 6 exceeded federal maximum contaminant levels in shallow groundwater wells in the Edwards Aquifer. There are several adverse health effects associated with chromium 6 exposure. Aside from being a known human carcinogen, ingestion of chromium 6 can cause respiratory irritation, pulmonary congestion and edema, and damages to the kidney, liver, and skin. There are currently 20 public water supplies with a 4 mile radius of the San Antonio Superfund site.

If you live near an EPA Superfund site and are concerned about your water, drop us an email at hello@hydroviv.com or visit hydroviv.com and use our live chat feature. Hydroviv is staffed with scientists and policy experts that can help you make sense of your water and find an effective filter, even if it isn’t one we sell. Be sure to follow along this week as we discuss all of the newly designated Superfund sites!

Other Articles We Think You Might Enjoy:
Newly Designated Superfund Sites 
What is Superfund? 
Superfund: Hockessin, Delaware

BREAKING: EPA Admits GenX Linked To Cancer

Analies Dyjak @ Wednesday, November 14, 2018 at 3:36 pm -0500

Analies Dyjak  |  Policy Nerd 

Our blog has been following PFAS contaminants such as the GenX chemical for months now, often reporting on new developments before mainstream news.
Today marks an important milestone: EPA has released a draft toxicity profile for GenX. This long-awaited toxicity report contains critical information for many states who have been seeking answers on this harmful contaminant.

EPA’s Draft Toxicity Assessments for GenX and PFBS:

EPA determined a candidate Chronic Reference Dose of 0.00008 mg/kg-day. A reference dose is the daily oral intake not anticipated to cause negative health effects over a lifetime. A reference dose is not a carcinogenic risk factor, however, EPA states that the toxicity data for GenX are “suggestive of cancer.” According to the draft report, oral exposure in animals had negative health effects on the kidney, blood, immune system, developing fetus, and liver. The draft toxicity report also provided information on PFBS, which is a replacement chemical for PFOS. The candidate Chronic Reference Dose for PFBS is 0.01 mg/kg-day, and there was insufficient data to determine its carcinogenic potential.

What Is GenX?

GenX is part of a category of contaminants called PFAS, or per and polyfluoroalkyl substances. The GenX chemical linked to cancer has gained national attention since being discovered in the Cape Fear River in June of 2017.
PFAS have historically been used in consumer products like Scotchgard, Gore-Tex, Teflon, and even the inside of popcorn bags. PFAS are also used in firefighting foam, which is the major source of its pollution in waterways across the country.

Background:

The Chemours plant in Fayetteville, North Carolina produces refrigerants, ion exchange membranes, and other fluoroproducts. They have been discharging liquid effluent into the Cape Fear River for years, which has contaminated drinking water for the entire area. GenX is the replacement chemical for PFOA. After PFOA was discovered to be toxic, manufacturers addressed the issue by making an equally-as toxic replacement. Manufacturers of PFAS have been doing this for years, which is why there are so many different variations present in the environment.

Is GenX Federally Regulated By EPA?

No. This means that municipalities are not required to test for PFBS or GenX in water. Additionally, this draft toxicity level is not a lifetime health advisory level, which states would be more inclined to follow.

When Will A Drinking Water Standard Be Determined?

Don’t hold your breath on anytime soon! The regulatory process can take decades, especially for such a persistent contaminant in the environment. This is more than enough time for adverse health effects to set in, and we recommend consumers do everything they can to learn about their water and protect themselves, rather than wait for the government to step in.

What Does This Mean For Me?

EPA is in the very early stages of determining a regulation or even health advisory for GenX. This draft toxicity level needs to go through public comment so that states, tribes, and municipalities can offer input and recommendations. If you want to see third-party data on filters that remove GenX in water and other PFAS, click HERE. 

Other Articles About GenX:
Timeline: GenX In North Carolina
ASTDR Toxicological Profile for PFAS
GenX Contamination In Drinking Water: What You Need To Know

Will Water Filters From the Musk Foundation Remove Lead?

Analies Dyjak @ Tuesday, October 9, 2018 at 4:02 pm -0400

Analies Dyjak | Policy Nerd

October 4, 2018- Elon Musk and The Musk Foundation confirmed a donation of $480,350 to Flint, Michigan Community Schools in hopes of addressing lead contamination in drinking water. Flint is one of many school districts across the country that has been working hard to generate long-term solutions for lead contamination in drinking water. This article examines whether the proposed filtration technology will effectively remove lead from drinking water. 

How Will The Funding Be Used?

Musk initially announced the filters would comply with FDA’s 5 parts per billion standard (which is actually the standard for lead in bottled water), instead of EPA’s 15 part per billion Action Level. While definitely lower than EPA's threshold, the American Academy of Pediatrics and Center for Disease Control have both acknowledged that there is no safe level of lead for children. The Musk Foundation has not released the exact type of water filters Flint, Michigan Community Schools plans to use. Press releases have indicated some type of ultraviolet filtration system. 

What Is UV Water Filtration?

Ultraviolet filtration eliminates biological contamination from drinking water. This includes bacteria, viruses, and harmful microorganisms like E.coli. The idea behind UV filtration is it prevents microorganisms from reproducing, by striking each individual cell. It’s comparable to and often more effective than using chlorine to kill bacterial contamination.

Does UV Filtration Filter Lead?

No. While UV filters are great at removing biological contamination from drinking water, they have several limitations. UV filters by themselves are not able to remove chemical contaminants including Volatile Organic Compounds, chlorine, lead, mercury and other heavy metals. To remove chemical contaminants (including lead), a UV-based system would need to be paired with lead removal media or reverse osmosis.

Our Take

Contrary to a lot of media reports, UV filters do not remove lead from water, so we're hoping that the UV is paired with a system that removes lead. We also hope that the filters are installed at the point of use, because water treated by a point of entry filter can accumulate lead in any pipe "downstream" of the filtration unit. 

Other Article We Think You Might Enjoy:
Why Are So Many Schools Testing Positive For Lead In Drinking Water?
Volatile Organic Compounds: What You Need To Know
Lead In Drinking Water
Heavy Metal Toxicity and Contamination

1,4-Dioxane In Drinking Water: What You Need To Know

Analies Dyjak @ Friday, November 16, 2018 at 11:05 am -0500

Analies Dyjak, M.A. | Head of Policy and Perspectives

**Updated 9/21/2021 to include recent studies

What Is 1,4-Dioxane?

1,4-dioxane is a synthetic industrial chemical, typically used as a stabilizer for chlorinated solvents. It was historically used in the production of 1,1,1-trichloroethane (TCA), which was phased out in 1985 after scientists determined it to be an ozone-depleting substance. Today, 1,4-dioxane is not typically added directly to consumer products but can be an unintentional byproduct in certain plastics. It’s introduced as a trace contaminant in certain ingredients, most commonly detergents, foaming agents, emulsifiers and solvents, including Polyethylene Glycol or PEG.  

Is 1,4-Dioxane Regulated?

1,4-dioxane in drinking water is not federally regulated under the Safe Drinking Water Act, even though EPA has classified it as “likely to be carcinogenic to humans by all exposure routes.” There are health advisories in place but a Maximum Contaminant Level (MCL) does not exist. This means that unless a state has its own enforceable standard, utility providers are not required to remove it from drinking water. 1,4-dioxane is regulated by the Occupational Safety and Health Administration (OSHA) for indoor workplace air quality. 1,4-dioxane is on the fourth drinking water Contaminant Candidate List and is also part of the Third Unregulated Contaminant Monitoring Rule. In 2019, New York State became the first state to regulate 1,4-Dioxane by establishing Maximum Contaminant Limits (MCL) of 10 ppb in cosmetics, and 2 ppb in personal care and household cleaning products by 12/31/2022, which will be further reduced to 1 ppb by 12/31/2023.  

How Does 1,4-Dioxane Enter Drinking Water?

1,4-dioxane has contaminated drinking water through both groundwater and surface water. Many instances of groundwater contamination are a result of 1,4-dioxane being used in various manufacturing processes. According to the Agency for Toxic Substances and Disease Registry, 1,4-dioxane can easily travel into groundwater because it is extremely soluble in water and does not stick to soil particles. 

1,4-dioxane contamination on Long Island, New York was a result of routine spills or direct disposal of solvents to the ground from manufacturing operations between the 1950s to the 1990s. 

1,4-dioxane was used in the manufacture of medical filters in Ann Arbor, Michigan. The methods of waste disposal used between 1966 to 1986 resulted in 1,4-dioxane being released into the environment, causing widespread groundwater contamination. 1,4-dioxane in drinking water continues to be a concern for local residents, even decades after the pollution was first discovered and remediation was to have been taking place. 

1,4-Dioxane has also been released into surface water, both into rivers or public sewage systems. Sources of contamination include effluent from industrial facilities as well as wastewater treatment plants.   

1,4-Dioxane Health Effects In Drinking Water

1,4-dioxane can harm the eyes, skin, lungs, liver, and kidneys. As previously stated, 1,4-Dioxane is classified by the US EPA as a likely human carcinogen. Like other contaminants, the dose and duration of exposure affect the likelihood and severity of adverse 1,4-dioxane health effects.

Why is 1,4-Dioxane So Hard To Remove From Drinking Water?

1,4-Dioxane is completely soluble in water. It dissolves completely, even at high concentrations. It also does not readily evaporate. Traditional treatment methods are ineffective at removing 1,4-Dioxane from drinking water, so a few larger municipalities have begun to incorporate specialized methods for 1,4-Dioxane removal in their processes. These can be prohibitively expensive for smaller municipal water suppliers, so there is not likely to be a widespread solution for 1,4-Dioxane removal implemented any time soon.  

What Can I Do if I Have 1,4-Dioxane in My Water?

There are no federal testing standards for 1,4-Dioxane, so we are unable to provide removal data. Hydroviv’s filters have however been tested and certified by NSF to remove VOC’s with similar chemical properties to 1,4-Dioxane. Most submicron pore size carbon block filters are able to address 1,4-dioxane, with the exception of granular activated carbon. A slower flow rate will also assist the carbon block filter by ensuring enough contact time with the 1,4-Dioxane and the filtration media. For example, Hydroviv drinking water filters incorporate carbon into our submicron block and at our 1 gallon/minute flow rate.

Other Articles We Think You Might Enjoy:
Does My State Regulate PFAS Chemicals in Drinking Water?
Fracking and Drinking Water
Does New Infrastructure Plan Address “Forever Chemicals” In Drinking Water?

Volatile Organic Compounds (VOCs) In Drinking Water: What You Should Know

Analies Dyjak @ Thursday, April 27, 2017 at 4:05 pm -0400

Hydroviv's Science Team

Most people are aware of Volatile Organic Chemicals (VOCs) because they are frequently discussed when selecting paint for their home, but many people don't realize that they can contaminate drinking water supplies. This article provides a broad overview of VOCs as it pertains to water, and also gives practical advice on how to protect against them if a water supply becomes contaminated.

What Are Volatile Organic Chemicals (VOCs)?

By definition, VOCs are a class of chemicals that vaporize easily at normal air temperatures. VOCs are commonly found in household and industrial products including gasoline, solvents, cleaners and degreasers, paints, inks and dyes, and pesticides. For example, gasoline is a mixture of VOCs including benzene, toluene, and other hydrocarbons, which gives gasoline it’s familiar odor.

Can VOCs Contaminate Drinking Water?

Absolutely. In fact, the US Geological Survey (USGS) found in a recent study that VOCs are present in one-fifth of the nation's water supplies. For example, benzene, (a constituent of gasoline) commonly enters groundwater when it spills or leaks out of underground fuel tanks. Other examples of commonly detected VOCs in drinking water include dichloromethane (methylene chloride), an industrial solvent; trichloroethylene, used in septic system cleaners; and tetrachloroethylene (perchloroethylene), used in the dry-cleaning industry.

How Are VOCs In Drinking Water Regulated By EPA?

Because It would be impractical and costly for municipalities to test for every potential chemical that can be categorized as a VOC, EPA regulates a subset of chemicals that commonly contaminate water supplies. For example, benzene, one rather common constituent, is regulated with a maximum contaminant level set at 0.005 milligrams per liter (parts per million) and a goal of zero in drinking water. Water analysis can be requested if there is reason to suspect the presence of a specific VOC.

Private wells are not covered by EPA's regulations and testing is typically optional. While VOCs can be detected by odor at high concentrations, laboratory analysis is the only way to measure VOCs in drinking water at the regulatory limits. We highly recommend that all people who get water from private wells get their water tested by an accredited laboratory.

How To Remove VOCs From Drinking Water

High quality water filters are the only effective way to remove Volatile Organic Compounds in water. These water filter companies (including Hydroviv) test their filters against chemicals that are selected to represent a wide range of VOCs that commonly contaminate water supplies. The NSF Standard 53 protocol for VOC reduction requires manufacturers to test against the chemicals listed in the table below:

alachlor atrazine benzene carbofuran
carbon tetrachloride chlorobenzene chloropicrin dibromochloropropane
o-dichlorobenzene p-dichlorobenzene 1,2-dichloroethane 1,1-dichloro-ethylene
cis-1,2-dichloroethylene trans-1,2-dichloroethylene 1,2-dichloro-propane cis-1,3-dichloropropylene
dinoseb endrin ethylbenzene ethylene dibromide
haloacetonitriles haloketones heptachlor epoxide hexachlorobutadiene
hexachlorocyclo-pentadiene lindane methoxychlor pentachlorophenol
simazine 1,1,2,2-tetrachloroethane tetrachloro-ethylene toluene
2,4,5-TP tribromo-acetic acid 1,2,4-trichlorobenzene 1,1,1-trichloroethane
1,1,2-trichloroethane trichloroethylene (TCE) trihalomethanes (THMs) xylenes

Table 1: List of chemicals that are part of the NSF 53 Standard Test For VOC Reduction

As always, we encourage you to reach out to our “Help No Matter What” technical support through live chat or email (support@hydroviv.com). Our team will provide science-backed advice on water quality and water filtration, even if you have no intention of buying a Hydroviv water filter. 

Other Articles We Think You'll Enjoy
5 Things to Know About Chromium 6 In Drinking Water
Why You Should Throw Out Your TDS Meter
Lead and Chromium 6 problems In Chicago's Drinking Water