Water Quality InformationWritten By Actual Experts

RSS

How Does Stormwater Runoff Affect Drinking Water?

Analies Dyjak @ Tuesday, October 30, 2018 at 4:10 pm -0400

*Updated 3/2/22 to include recent study*

Analies Dyjak  |  Policy Nerd

Heavy rains and snowmelt can carry a lot of unwanted contaminants into drinking water sources. Here’s how stormwater runoff can affect your water.

How Does Stormwater Affect Drinking Water?

Heavy rain storms create a rapid influx of water, which can cause a host of health and environmental issues. Rainwater travels to low-lying bodies of water, including oceans, lakes, rivers, streams, and aquifers. Both surface and groundwater are susceptible to contamination from stormwater runoff, both of which are sources of drinking water. As water travels, it picks up loose debris, pesticides, herbicides, oil, and other types of pollution in its path. This cocktail of contaminants is then dumped into a nearby waterway. Some municipal water treatment facilities are equipped to deal with these types of contamination, while others are not. 86% of the U.S. population gets their drinking water from surface water sources, so maintaining clean lakes and rivers is extremely important for managing stormwater runoff pollution in drinking water.

Road Salt and Drinking Water Contamination 

70% of the US population lives in areas that experience ice and snow, and rely heavily on road salts and other deicing techniques to maintain road safety. Road salts are crucial for decreasing automobile accidents, but they can have some unintended consequences on the environment. A recent study found that freshwater contamination from these deicing materials causing significant increases in the salinity of the freshwater, resulting in issues with native wildlife and widespread contamination of drinking water supplies. The contamination is primarily from excess chloride and sodium, which affects both surface water and groundwater, for municipal water suppliers as well as private wells. In addition, deicing salts can leach heavy metals (such as mercury, lead, cadmium, copper, and zinc) from sediment and plumbing pipes into the drinking water. In groundwater, sodium can also mobilize dissolved radium, increasing the risk of radon exposure to homeowners.

What Are Combined Sewer Overflows or CSO’s?

Combined Sewer Overflows or CSO’s, are a system of underground canals that collect stormwater runoff, industrial wastewater, and sewage all in the same pipe. Under normal conditions, stormwater and sewage travels to a wastewater plant where it’s treated before being discharged into a body of water. During heavy rain events, the large influx of stormwater causes pipes to exceed the capacity of the the system. Untreated wastewater, including sewage, overflows into nearby oceans, lakes, rivers or streams or wherever a stormwater discharge output exists. CSO’s were used as early as the 1850’s, and were the only system in place to deal with such high volumes of water. Many cities have replaced CSO’s with advanced infrastructure, but cities such as Portland, Maine and Cambridge, Massachusetts still use them.

Impervious Surfaces and Stormwater

Impervious surfaces are developed areas where water is unable to infiltrate into the earth. This typically refers to paved roads, roofs, and sidewalks. When water is unable to infiltrate, it flows into the nearest body of water or wastewater system. Impervious surfaces are of concern because water picks up and carries dangerous contaminants, then deposits pollution into drinking water sources. Impervious surfaces also increase the impacts from floods. Unable to percolate, water sits on top of paved roads, increasing the flood potential and presence of biological contamination. As communities continue to develop, the area of paved or impervious surface increases as well.

Wetlands: Important for Stormwater Retention

Wetlands offer remarkable protection from the impacts of flooding and other stormwater damages. Wetlands absorb incoming water and release it slowly, acting as a natural sponge. According to the U.S Army Corps of Engineers, the state wetland conservation along the Charles River in Boston, Massachusetts saved approximately $17 million in potential flood damage. Additionally, wetlands naturally filter stormwater runoff pollution. The fast-moving water is slowed by vegetation, which allows suspended sediment and pollution to fall to the bottom.

Other Articles We Think You Might Enjoy:
Surface Water: What You Need To Know
Agricultural Runoff: Why It's A Problem And What's Being Done To Stop It
Nitrates In Drinking Water

5 Things You Need To Know About Bottled Water

Analies Dyjak @ Friday, January 4, 2019 at 1:59 pm -0500

Analies Dyjak, M.A | Head of Policy and Perspectives   

Whenever severe water contamination impacts a community, people (and media outlets) tend to jump to bottled water as the only water contamination solution. The bottled water industry has managed to convince vulnerable consumers that their product is inherently safer than what’s coming out of their taps. Oftentimes, this isn’t the case. So why is bottled water bad? The reality is that bottled water is associated with a host of ethical, environmental and regulatory problems. Drinking bottled water is not a long-term solution to water contamination, and we should critically examine its role as water quality crises continue to pop up across the country. Here are our main problems with the bottled water industry to give you a better idea of why bottled water is bad.

1)  Bottled Water Companies Use The Same Source As Tap Water

According to the FDA, bottled water companies are permitted to package and sell water from municipal taps, artesian wells, mineral water, natural springs, and drilled wells. Surprisingly enough, they aren’t required to disclose the source water itself. If you’re looking for transparency, municipal systems are required to publish an annual Consumer Confidence Report (CCR) that discloses characteristics about the source water, treatment techniques, and other distribution information. The bottled water industry also frequently packages and distributes groundwater from dug wells. Groundwater can often be more susceptible to pollution than surface water because it’s not regulated by the federal government. Groundwater acts as a catchment for surface water runoff and agricultural pollution, not to mention its increased risk of arsenic contamination.

2)  Bottled Water and Tap Water Have Almost Identical Standards

People are often surprised to learn that there’s virtually no difference between the regulations for bottled water and tap water. The Environmental Protection Agency regulates tap water and the Food and Drug Administration regulates bottled water. The allowable concentrations of contaminants are identical for both, with the exception of lead. The standard for lead in bottled water is 5 parts per billion, as opposed to 15 parts per billion in tap water. This is because during bottling production, water should never come in contact with older lead service pipes the same way municipal water does. Arsenic can be present in groundwater as a result of natural weathering of bedrock. Exposure to arsenic in drinking water can result in cancers in various organs, including skin, bladder, lung, kidney, liver, and prostate. Non-cancerous health effects include neurological damage, such as peripheral neuropathy.

3)  Impacts On The Environment

It’s well-documented that single-use plastic water bottles wreak havoc on the environment. Plastics are made from petroleum, which is a fossil fuel and a non-renewable resource. Companies often tout their commitment to reducing plastic consumption by weight, but this has no bearing on the volume at which it’s produced. You may be familiar with “Trash Island,” in the Northern Pacific Ocean. This phenomenon is the result of decades of poor waste management and excessive production of various types of plastic. According to a 2016 study by the Ellen Macarthur Foundation, the ocean will contain more plastic by weight than fish by the year 2050. Polyethylene Terephthalate (PET) is the main ingredient in plastic water bottles. PET takes over 400 years to decompose in the environment and its constituents can often take longer to degrade. Chemicals like Bisphenol A (BPA) have since been phased out of plastic production, but are still very much present in the environment and will continue to be released as older plastics degrade.

4)  False Advertising

Marketing schemes deceive consumers into believing that companies use pristine source water. The packaging uses carefully curated images of mountain-top creeks and streams to suggest pure, untainted products. The reality is bottled water hardly ever comes from the sources depicted on the label.

5)  Ethical Dilemma

Nestle, a company with a long track record of unscrupulous business practices, owns deep aquifers throughout California, a state which has been experiencing drought-like conditions for several decades. The expensive equipment purchased by Nestle allows the company to extract water in a way that tribes and municipalities cannot afford to do. Similar companies have been known to use their purchasing power to acquire land, pushing tribes and municipalities out of the conversation. Problems arise when drought-stricken or contaminated communities are unable to afford the same resources as bottled water companies.

Our Take:

While bottled water offers some measure of immediate relief to a severe drinking water crisis, it is in no way a long-term water contamination solution. Companies often sell the same water that’s feeding municipal systems. Not to mention, EPA and FDA have almost identical regulations for both tap and bottled water. There’s also an inherent cost associated with bottled water, which varies depending on the brand. Finally, a huge part of why bottled water is bad is that scientific data confirms the importance of reducing plastic pollution on a global scale. Municipal providers offer greater transparency and are required to disclose information about the source water.

Other Articles We Think You Might Enjoy:
Microplastics In Water: What You Need To Know
Endocrine Disruptors In Drinking Water
Water Conservation and Water Quality In The Sports Industry

Problems We Found In Omaha, Nebraska Drinking Water

Analies Dyjak @ Wednesday, August 1, 2018 at 3:22 pm -0400

Analies Dyjak, M.A.  |  Water Nerd

For Hydroviv’s assessment of Omaha, Nebraska drinking water, we collected water quality test data from the city’s Consumer Confidence Report and the U.S. Environmental Protection Agency. We cross referenced Omaha's water quality data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in Omaha's drinking water.

Where Does Omaha Source Its Drinking Water? 

Omaha draws its tap and drinking water from the Missouri River, Platte River, and the Dakota Sandstone aquifer.

Lead in Omaha’s Drinking Water

Lead enters tap water through older lead service pipes and lead-containing plumbing, soldered joints, and fixtures. Based on the 2017 water quality report, lead levels in Omaha ranged from 0.5 to 14.9 parts per billion. 10% of taps had levels over 6.4 parts per billion, which is barely in compliance with the loose EPA standard of 15 parts per billion. However, if you were to ask toxicologists, pediatricians, or the CDC they would all tell you that there is no safe minimum level of lead. Lead is a neurotoxin that can have serious developmental effects on children.

Arsenic in Omaha’s Drinking Water

Arsenic is a heavy metal that typically leaches into groundwater as surrounding bedrock naturally weathers overtime. According to the most recent data, Arsenic concentrations ranged from 1 to 3.93 parts per billion in Omaha drinking water. EPA set a Maximum Contaminant Level of 10 parts per billion for Arsenic, but several health and regulatory agencies believe this level should be reduced to 1 or even 0 parts per billion. Arsenic is a toxic substance that is linked to a long list of health problems in humans. For example, arsenic can cause a number of different cancers (e.g. skin, bladder, lung, liver, prostate), as well as create non-cancerous problems with cardiovascular (heart/blood vessels), pulmonary (lungs), immune, neurological (brain), and endocrine (e.g. diabetes) systems. Hydroviv recommends purchasing a filter that is optimized to remove Arsenic from your drinking water, especially if you’re serviced by a private well.

Disinfection By-Products in Omaha’s Drinking Water

When water treatment facilities sanitize the water with chemicals such as chlorine, different contaminants can be created. These types of contaminants are called Disinfectant by products or DBPs. They are split into two categories: Total Trihalomethanes (TTHMs) and Haloacetic Acids-5 (HAA5). Concentrations of TTHMs averaged 40.2 parts per billion but were detected as high as 66.5 parts per billion. HAA5 concentrations averaged 19.6 parts per billion but were detected as high as 37.6 parts per billion. For a bit of perspective, EPA set a Maximum Contamination Level of 80 parts per billion for TTHMs and 60 parts per billion for HAA5.

Chromium 6 In Omaha’s Drinking Water

Chromium 6 is an unregulated toxic metal that's associated with metal processing, tannery facilities, chromate production, stainless steel welding, and pigment production. Concentrations of Chromium 6 were found to be ranging from 130 parts per trillion to 1400 parts per trillion. These levels are nearly 70 times higher than the concentration determined to have a negligible impact on cancer risk. EPA has acknowledged that Chromium 6 is a known human carcinogen through inhalation, but is still determining its cancer potential through ingestion of drinking water. Lung, nasal and sinus cancers are associated with Chromium 6 exposure. Ingestion of extremely high doses of chromium 6 compounds can cause acute respiratory disease, cardiovascular, gastrointestinal, hematological, hepatic, renal, and neurological distress which may result in death.

Synthetic Organic Contaminants in Omaha's Drinking Water

Di(2-ethylhexyl)phthalate was also detected in Omaha's drinking water. This chemical is known for its ability to make plastic flexible. A toxicology report has shown that this chemical is known to cause reproductive problems in young males, stomach pains, and is labeled as a probable carcinogen. EPA set a Maximum Contaminant Level of 6 parts per billion for this contaminant. The Omaha water quality problem report detected concentrations of these chemicals ranging from less than 2 parts per billion to 3.11 parts per billion.

Other Articles We Think You Might Enjoy:
Lead Contamination In Drinking Water
Disinfection Byproducts In Drinking Water: What You Need To Know
5 Things To Know About Arsenic In Drinking Water


Problems We Found With Columbus, Ohio's Drinking Water

Analies Dyjak @ Wednesday, August 1, 2018 at 2:56 pm -0400

Ernesto Esquivel  |  Water Nerd

For Hydroviv’s assessment of Columbus drinking water, we collected water quality test data from the city’s Consumer Confidence Report and the U.S. Environmental Protection Agency. We cross referenced Columbus water quality data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in Columbus drinking water.

Where Does Columbus Source Its Drinking Water?

Columbus sources its drinking water from the Scioto River, Big Walnut Creek, and groundwater from the Scioto River Valley. The city is serviced by three water treatment plants that each take care of a certain area of the city. The three plants are the Dublin Road treatment plant (DRWP), the Hap Cremean Water Plant (HCWP), and the Parsons Avenue Water Plant (PAWP).

Chromium 6 In Columbus Drinking Water

Chromium 6 is a highly toxic metal that is currently unregulated by the EPA. In recent years, Columbus city water has had a problem with this dangerous contaminant. Chromium 6 pollution is associated with metal processing, tannery facilities, chromate production, stainless steel welding, and pigment production. In this years water quality report, concentrations of Chromium 6 were detected as high as 0.35 parts per billion in certain groundwater sources. These levels are 17 times higher than the concentration determined to have a negligible impact on cancer risk. EPA has acknowledged that Chromium 6 is a known human carcinogen through inhalation, but is still determining its cancer potential through ingestion of drinking water. Lung, nasal and sinus cancers are associated with Chromium 6 exposure. Ingestion of extremely high doses of chromium 6 compounds can cause acute respiratory disease, cardiovascular, gastrointestinal, hematological, hepatic, renal, and neurological distress which may result in death.

Disinfection Byproducts In Columbus Drinking Water

Columbus city water problems also includes high concentrations of disinfection byproducts or DBPs. DBPs are formed when chlorine-based disinfectants react with organic matter. They are split into two categories: Total Trihalomethanes (TTHMs) and Haloacetic Acids-5 (HAA5). Concentrations of HAA5 averaged 29.4 parts per billion at DRWP, 45.3 parts per billion at HCWP, and 8.4 parts per billion at PAWP. Concentrations of TTHMs averaged 40.2 parts per billion at DRWP, 53 parts per billion at HCWP, and 34.1 parts per billion in PAWP. For a bit of perspective, EPA’s Maximum Contaminant Level for HAA5 is 60 parts per billion and 80 parts per billion for TTHMs. Disinfection Byproducts are a category of emerging contaminants which means they have been detected in drinking water but the risk to human health is unknown. Regulatory agencies have very little knowledge about the adverse health effects of DBPs, and their toxicity. EPA has stated that they have been linked to an increased risk of bladder cancer, as well as kidney, liver, and central nervous system problems.

It’s important to note that only a handful of contaminants are required to be included in annual Consumer Confidence Reports, and that there are hundreds of potentially harmful unregulated contaminants that aren’t accounted for. If you’re interested in learning more about water filters that have been optimized for Columbus tap water quality, feel free to visit www.hydroviv.com to talk to a Water Nerd on our live chat feature or send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
5 Things You Should Know About Chromium 6
Disinfection Byproducts In Drinking Water: What You Need To Know

Problems We Found With Milwaukee's Drinking Water

Analies Dyjak @ Friday, July 27, 2018 at 4:02 pm -0400



Analies Dyjak  |  Policy Nerd

For Hydroviv’s assessment of the city of Milwaukee, Wisconsin’s drinking water, we collected water quality test data from the city and the U.S. Environmental Protection Agency. We cross referenced their water quality data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in Milwaukee’s drinking water.

Where Does Milwaukee Source Its Drinking Water?

Milwaukee sources its drinking water from Lake Michigan. Lake Michigan has had a long history of pollution, including a recent lawsuit involving Chromium 6 releases from an abutting steel facility.

Chromium 6 In Milwaukee’s Drinking Water

Chromium 6 is a highly toxic metal that is currently unregulated by the EPA. In recent years, the city of Milwaukee's water has had a major problem with this dangerous contaminant. Chromium 6 pollution is associated with metal processing, tannery facilities, chromate production, stainless steel welding, and pigment production. This years water quality report for Milwaukee found levels of Chromium 6 as high as 0.25 parts per billion. These levels are 12.5 times higher than the concentration determined to have a negligible impact on cancer risk. EPA has acknowledged that Chromium 6 is a known human carcinogen through inhalation, but is still determining its cancer potential through ingestion of drinking water. Lung, nasal and sinus cancers are associated with Chromium 6 exposure. Ingestion of extremely high doses of chromium 6 compounds can cause acute respiratory disease, cardiovascular, gastrointestinal, hematological, hepatic, renal, and neurological distress which may result in death.

Lead In Milwaukee's Drinking Water 

In recent years, the city of Milwaukee has also had a problem with lead in drinking water. Lead enters Milwaukee's tap water through old lead service pipes and lead-containing plumbing. 10% of sites that were tested for lead had concentrations over 7.2 parts per billion. The highest concentration detected in 2017 was 130 parts per billion, which is a whopping 8.6 times higher that the Federal Action Level of 15 parts per billion. Environmental Protection Agency, Center for Disease Control and American Academy of Pediatrics all recognize that there is no safe level of lead for children. These health and regulatory organizations are trying to reduce the allowable limit, so a concentration of 130 parts per billion is of serious concern. Treated water leaving the plant may be in compliance with loose EPA standards, but could become contaminated once it enters older infrastructure. Houses built before 1986 were most likely built with lead plumbing and lead fixtures. Lead exposure can cause developmental issues, lowered IQ, and damages to the kidneys and brain.

Perfluorinated Compounds In Milwaukee's Drinking Water

This years water quality report for Milwaukee included test data from six Perfluorinated Compounds (PFCs). Perfluorinated Compounds are associated with firefighting foam, non-stick cookware, Scotchguard and other solvents from manufacturing. The two PFCs that are the most well known and the most researched are Perfluorooctanoic acid (PFOA) which was detected at 2.1 parts per trillion and Perfluorooctane-sulfonic acid (PFOS) which was detected at 2 parts per trillion. The Agency for Toxic Substances and Disease Registry recently recommended setting a Minimum Risk Level of 20 parts per trillion for both of these substances. These data are preliminary and the effects to human health are still unknown. This category of chemicals are “emerging contaminants” which means they are thought to pose a potential threat to human health and the environment, but haven't yet been regulated. Perfluorinated Compounds contribute to environmental contamination largely due to the fact that they are highly resistant to degradation processes, and thus persist for many years in water, air and can enter the food chain via bioaccumulation in certain animal species.

Chloramine In Milwaukee’s Drinking Water

While most municipalities use chlorine as the primary drinking water disinfectant, Milwaukee’s drinking and tap water is disinfected with chloramine. Chloramine is primarily responsible for what many customers report as the “bad taste” or “pool smell” of tap water. Unlike chlorine, chloramine does not dissipate if a container of water is left in the refrigerator overnight. Most one-size-fits-all water filters use filtration media that doesn’t do a great job removing chloramine, but the filters that we design and build at Hydroviv for Milwaukee use a special filtration media that is purposefully designed to remove chloramine.

It’s important to note that only a handful of contaminants are required to be included in annual Consumer Confidence Reports, and that there are hundreds of potentially harmful unregulated contaminants that aren’t accounted for. If you’re interested in learning more about water filters that have been optimized for the city of Milwaukee’s tap water quality, feel free to visit www.hydroviv.com to talk to a Water Nerd on our live chat feature or send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead Contamination In Drinking Water
5 Things To Know About Chromium 6 In Drinking Water
PFOA and PFOS: What You Need To Know